Kruskal算法证明
 
  易证,对于一个无向加权连通图,总是存在一棵或以上的有限课生成树,而这些生成树中肯定存在至少一棵最小生成树。下面证明Kruskal算法构造的生成树是这些最小生成树中的一棵。
  设T为Kruskal算法构造出的生成树,U是G的最小生成树。如果T==U那么证明结束。如果T != U,我们就需要证明T和U的构造代价相同。由于T != U,所以一定存在k > 0条边存在于T中,却不在U中。接下来,我们做k次变换,每次从T中取出一条不在U中的边放入U,然后删除U一条不在T中的边,最后使T和U的边集相同。每次变换中,把T中的一条边e加入U,同时删除U中的一条边f。e、f按如下规则选取:a). e是在T中却不在U中的边的最小的一条边;b). e加入U后,肯定构成唯一的一个环路,令f是这个环路中的一条边,但不在T中。f一定存在,因为T中没有环路。
 
  这样的一次变换后,U仍然是一棵生成树。
  我们假设e权值小于f,这样变换后U的代价一定小于变换前U的代价,而这和我们之前假设U是最小生成树矛盾,因此e权值不小于f。
  再假设e权值大于f。由于f权值小于e,由Kruskal算法知,f在e之前从E中取出,但被舍弃了。一定是由于和权值小于等于f的边构成了环路。但是T中权值小于等于f(小于e)的边一定存在于U中,而f在U中却没有和它们构成环路,又推出矛盾。所以e权值不大于f。于是e权值等于f。
  这样,每次变换后U的代价都不变,所以K次变换后,U和T的边集相同,且代价相同,这样就证明了T也是最小生成树。由证明过程可以知道,最小生成树可以不是唯一的。
 
 
 
无向图G的所有最小生成树的边权集合相同

kruskal证明的更多相关文章

  1. 【图论】信手拈来的Prim,Kruskal和Dijkstra

    关于三个简单的图论算法 prim,dijkstra和kruskal三个图论的算法,初学者容易将他们搞混,所以放在一起了. prim和kruskal是最小生成树(MST)的算法,dijkstra是单源最 ...

  2. 最小生成树的Prim算法以及Kruskal算法的证明

    Prime算法的思路:从任何一个顶点开始,将这个顶点作为最小生成树的子树,通过逐步为该子树添加边直到所有的顶点都在树中为止.其中添加边的策略是每次选择外界到该子树的最短的边添加到树中(前提是无回路). ...

  3. 最小生成树---Prim算法和Kruskal算法

    Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gra ...

  4. 最小生成树POJ3522 Slim Span[kruskal]

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7594   Accepted: 4029 Descrip ...

  5. 【BZOJ-2177】曼哈顿最小生成树 Kruskal + 树状数组

    2177: 曼哈顿最小生成树 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 190  Solved: 77[Submit][Status][Discu ...

  6. 最小生成树问题---Prim算法与Kruskal算法实现(MATLAB语言实现)

    2015-12-17晚,复习,甚是无聊,阅<复杂网络算法与应用>一书,得知最小生成树问题(Minimum spanning tree)问题.记之. 何为树:连通且不含圈的图称为树. 图T= ...

  7. 学习笔记之 prim算法和kruskal算法

    ~. 最近数据结构课讲到了prim算法,然而一直使用kruskal算法的我还不知prim的思想,实在是寝食难安,于此灯火通明之时写此随笔,以祭奠我睡过去的数 据结构课. 一,最小生成树之prim pr ...

  8. Prim算法和Kruskal算法(图论中的最小生成树算法)

    最小生成树在一个图中可以有多个,但是如果一个图中边的权值互不相同的话,那么最小生成树只可能存在一个,用反证法很容易就证明出来了. 当然最小生成树也是一个图中包含所有节点的权值和最低的子图. 在一个图中 ...

  9. Kruskal

    算法描述:克鲁斯卡尔算法需要对图的边进行访问,所以克鲁斯卡尔算法的时间复杂度只和边又关系,可以证明其时间复杂度为O(eloge). 算法过程: 1.将图各边按照权值进行排序 2找出权值最小的边,(条件 ...

随机推荐

  1. 【文件】使用jacob将word转换成pdf格式

    使用jacob将word转换成pdf格式   1.需要安装word2007或以上版本,若安装07版本学确保该版本已安装2downbank0204MicrosoftSaveasPDF_ XPS,否则安装 ...

  2. 使用CSS将图像对齐

    相对于<img>元素的align特性来说,越来越多的网页设计人员使用float属性来对齐图像.可以采用两种方式来实现对齐.为了确保文本不会与图像的边缘接触,我们经常会给图像增加一个外边距. ...

  3. linux bash的重定向

    cnblogs原创 下面几种bash重定向各表示什么意思? find / -name passwd > /dev/null >& > /dev/null find / -na ...

  4. Python 入门基础19 --面向对象、封装

    2019.04.17 一.面向对象与面向过程 二.名称空间操作 三.类与对象的概念 四.语法 五.对象查找属性的顺序 2019.04.18 1.类与对象的所有概念:__init__方法 2.类的方法与 ...

  5. 11、Logback日志框架介绍和SpringBoot整合实战 2节课

    1.新日志框架LogBack介绍     简介:日志介绍和新日志框架Logback讲解 1.常用处理java的日志组件 slf4j,log4j,logback,common-logging 等     ...

  6. springboot项目发布到独立的tomcat中运行&打成jar包运行

    springboot的打包方式依赖于插件:(下面插件打出的包与普通的包目录结构有区别) <plugin> <groupId>org.springframework.boot&l ...

  7. linux服务器last查看关机记录

    1.查看重启记录 last reboot命令 [root@test ~]# last reboot reboot system boot -.el6.x Mon May : - : (+:) rebo ...

  8. 常用css样式(布局)

    兼容css3新属性 在css3中,我们可以使用prefixfree.min.js这个插件来自动为css3的相关属性加上兼容浏览器属性,使我们不用为每个css3新属性再加上属性(需要用到大量css3的项 ...

  9. javaScript中自定义sort中的比较函数,用于比较字符串长度,数值大小

      , 1.2, 'bb', 'cc']; var len = arr.length; // for (var i = 0; i < len; i++) { // alert(arr + &qu ...

  10. centos7使用haproxy1.7.5实现反向代理负载均衡实战

    使用haproxy实现反向代理负载均衡实战环境准备:两台虚拟机 # yum install -y gcc glibc gcc-c++ make screen tree lrzsz node1源码编译安 ...