下面我们抛开1中的问题。介绍拉格朗日对偶。这一篇中的东西都是一些结论,没有证明。

假设我们有这样的问题:$min_{w}$ $f(w)$,使得满足:(1)$g_{i}(w)\leq 0,1\leq i \leq k$,(2)$h_{i}(w)= 0,1\leq i \leq l$

我们定义$L(w,\alpha ,\beta )=f(w)+\sum_{i=1}^{k}\alpha_{i}g_{i}(w)+\sum_{i=1}^{l}\beta_{i}h_{i}(w)$,其中$\alpha,\beta$被称作拉格朗日因子

第一部分:

设$\theta _{p}(w)=max_{\alpha,\beta:\alpha\geq 0}L(w,\alpha ,\beta )$,可以证明当$\theta $满足问题描述中的两个条件时,我们有$\theta _{p}(w)=f(w)$,否则$\theta _{p}(w)=+oo$

然后我们定义$p^{*}=\underset{w}{min}\theta_{p}(w)=\underset{w}{min} \underset{\alpha,\beta:\alpha\geq 0}{max}L(w,\alpha,\beta)$,那么$p^{*}$就是原问题的解。

第二部分:

设$\theta_{D}(\alpha,\beta)=\underset{w}{min}L(w,\alpha,\beta)$

$d^{*}=\underset{\alpha,\beta:\alpha\geq 0}{max} \theta_{D}(\alpha,\beta)=\underset{\alpha,\beta:\alpha\geq 0}{max} \underset{w}{min}L(w,\alpha,\beta)$

总有$d^{*}\leq p^{*}$成立。当函数$g$和函数$f$是凸函数,$h$是线性函数时,等号成立。设取得等号成立时,各参数的值为$w^{*},\alpha^{*},\beta^{*}$,那么,有下面的式子成立:
(1)$\frac{\partial }{\partial w_{i}}L(w^{*},\alpha^{*},\beta^{*})=0,1\leq i \leq n$
(2)$\frac{\partial }{\partial \beta_{i}}L(w^{*},\alpha^{*},\beta^{*})=0,1\leq i \leq l$
(3)$\alpha^{*}g_{i}(w^{*})=0,1\leq i \leq k$
(4)$g_{i}(w^{*}) \leq 0,1\leq i \leq k$
(5)$\alpha^{*} \geq 0,1\leq i \leq k$

SVM学习笔记2-拉格朗日对偶的更多相关文章

  1. SVM学习笔记(一)

    支持向量机即Support Vector Machine,简称SVM.一听这个名字,就有眩晕的感觉.支持(Support).向量(Vector).机器(Machine),这三个毫无关联的词,硬生生地凑 ...

  2. SVM学习笔记

    一.SVM概述 支持向量机(support vector machine)是一系列的监督学习算法,能用于分类.回归分析.原本的SVM是个二分类算法,通过引入“OVO”或者“OVR”可以扩展到多分类问题 ...

  3. SVM学习笔记4-核函数和离群点的处理

    核函数在svm里,核函数是这样定义的.核函数是一个n*n(样本个数)的矩阵,其中:$K_{ij}=exp(-\frac{||x^{(i)}-x^{(j)}||^{2}}{2\sigma ^{2}})$ ...

  4. SVM学习笔记(二)----手写数字识别

    引言 上一篇博客整理了一下SVM分类算法的基本理论问题,它分类的基本思想是利用最大间隔进行分类,处理非线性问题是通过核函数将特征向量映射到高维空间,从而变成线性可分的,但是运算却是在低维空间运行的.考 ...

  5. 机器学习6—SVM学习笔记

    机器学习牛人博客 机器学习实战之SVM 三种SVM的对偶问题 拉格朗日乘子法和KKT条件 支持向量机通俗导论(理解SVM的三层境界) 解密SVM系列(一):关于拉格朗日乘子法和KKT条件 解密SVM系 ...

  6. SVM学习笔记(一):libsvm参数说明(转)

    LIBSVM 数据格式需要---------------------- 决策属性 条件属性a 条件属性b ... 2 1:7 2:5 ... 1 1:4 2:2 ... 数据格式转换--------- ...

  7. SVM学习笔记-线性支撑向量机

    对于PLA算法来说,最终得到哪一条线是不一定的,取决于算法scan数据的过程. 从VC bound的角度来说,上述三条线的复杂度是一样的 Eout(w)≤Ein0+Ω(H)dvc= ...

  8. SVM学习笔记5-SMO

    首先拿出最后要求解的问题:$\underset{\alpha}{min}W(\alpha)=\frac{1}{2} \sum_{i,j=1}^{n}y^{(i)}y^{(j)}\alpha_{i}\a ...

  9. SVM学习笔记3-问题转化

    在1中,我们的求解问题是:$min_{w,b}$ $\frac{1}{2}||w||^{2}$,使得$y^{(i)}(w^{T}x^{(i)}+b)\geq 1 ,1 \leq i \leq n$ 设 ...

随机推荐

  1. jQuery-手风琴效果-2

    动画 高级函数:基于底层函数又进行了封装 两大块:简化版的动画函数和万能动画函数 简化版动画函数 显示/隐藏$().show; $(...).hide(); 强调:无参数的show()/hide()使 ...

  2. TP引用样式表和js文件及验证码

    TP引用样式表和js文件及验证码 引入样式表和js文件 <script src="__PUBLIC__/bootstrap/js/jquery-1.11.2.min.js"& ...

  3. 关于kingoroot这款软件

    弃了饱受诟病的kingroot系列的软件,又出现了一款名为kingoroot的软件. 大约一年之前用过kingoroot的apk版,成功为我的手机root了,而且其行为也并不是那么流氓,所以当时对其很 ...

  4. Yii GridView

  5. html5-新元素新布局模板

    <!DOCTYPE html><html lang="en"><head>    <meta charset="UTF-8&qu ...

  6. Java基础(basis)-----关键字break、continue、return的区别

       1.break      break只能用于switch语句和循环语句中,跳出当前循环:但是如果是嵌套循环, 则只能跳出当前的这一层循环,只有逐层break才能跳出所有循环 for (int i ...

  7. neuFlow&CNP-卷积计算加速器&神经网络加速芯片生态系统

    上周看到韩松毕业论文,扯出神经网络加速器EIE,刚好这周调研了一下neuFlow,扯出09年的一篇做卷积加速的文章,大牛Lecun Yan的学生做的,一晃眼,快十年了.也记录之. 这一套还没研究透,又 ...

  8. Locust 设置响应断言

    转:http://www.testclass.net/locust/assert/ 性能测试也需要设置断言么? 某些情况下是需要,比如你在请求一个页面时,就可以通过状态来判断返回的 HTTP 状态码是 ...

  9. 利用sqoop将hive数据导入导出数据到mysql

    一.导入导出数据库常用命令语句 1)列出mysql数据库中的所有数据库命令  #  sqoop list-databases --connect jdbc:mysql://localhost:3306 ...

  10. JAVA基础2---深度解析A++和++A的区别

    我们都知道JAVA中A++和++A在用法上的区别,都是自增,A++是先取值再自增,++A是先自增再取值,那么为什么会是这样的呢? 1.关于A++和++A的区别,下面的来看个例子: public cla ...