这题是一道区间DP

思维难度主要集中在如何预处理距离上

由生活经验得,邮局放在中间显然最优

所以我们可以递推求出\( w[i][j] \)表示i,j之间放一个邮局得距离

然后设出状态转移方程

设\( dp[i][j] \)表示从1开始到i放j个邮局的最短距离

然后转移为:\( dp[i][j]=min(dp[k][j-1]+w[k+1][j],dp[i][j]),i \le k \le j \)

显然是个\( O(n^{3}) \)的DP

能够得40分

#include <cstdio>
#include <algorithm>
#include <cstring>
#define int long long
using namespace std;
int w[][],dp[][],n,p,x[];
signed main(){
scanf("%lld %lld",&n,&p);
for(int i=;i<=n;i++)
scanf("%lld",&x[i]);
sort(x+,x+n+);
memset(w,0x3f,sizeof(w));
for(int i=;i<=n;i++)
w[i][i]=;
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
w[i][j]=w[i][j-]+x[j]-x[(i+j)/];
memset(dp,0x3f,sizeof(dp));
for(int i=;i<=n;i++)
dp[i][]=w[][i];
for(int i=;i<=p;i++)
dp[i][i]=;
for(int i=;i<=p;i++)
for(int j=i+;j<=n;j++)
for(int k=i-;k<=j;k++){
dp[j][i]=min(dp[j][i],dp[k][i-]+w[k+][j]);
//5 printf("%d %d %d %d\n",i,j,k,dp[j][i]);
}
/*for(int l=1;l<=n;l++)
for(int i=1;i+l<=n;++)
printf("w[%d][%d]=%d\n",i,i+l,w[i][i+l]);*/
printf("%lld\n",dp[n][p]);
return ;
}

然后就是优化

我们可以发现一些显然的性质

\( w[i^{'}][j] \le w[i][j^{'}] , i \le i^{'} \le j \le j^{'} \)

\( w[i][j]+w[i^{'}][j^{'}] \le w[i^{'}][j]+w[i][j^{'}] \)

然后就可以用四边形不等式优化DP了!

然后QwQ

复杂度\( O(n^{2}) \)

没了

#include <cstdio>
#include <algorithm>
#include <cstring>
#define int long long
using namespace std;
int w[][],dp[][],n,p,x[],s[][];
signed main(){
scanf("%lld %lld",&n,&p);
for(int i=;i<=n;i++)
scanf("%lld",&x[i]);
sort(x+,x+n+);
memset(w,0x3f,sizeof(w));
for(int i=;i<=n;i++)
w[i][i]=;
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
w[i][j]=w[i][j-]+x[j]-x[(i+j)/];
memset(dp,0x3f,sizeof(dp));
for(int i=;i<=n;i++)
dp[i][]=w[][i],s[i][]=;;
for(int i=;i<=p;i++)
dp[i][i]=;
for(int i=;i<=p;i++){
s[n+][i]=n;
for(int j=n;j>=i+;j--)
for(int k=s[j][i-];k<=s[j+][i];k++)
if(dp[j][i]>dp[k][i-]+w[k+][j]){
dp[j][i]=dp[k][i-]+w[k+][j];
s[j][i]=k;
//5 printf("%d %d %d %d\n",i,j,k,dp[j][i]);
}
}
/*for(int l=1;l<=n;l++)
for(int i=1;i+l<=n;++)
printf("w[%d][%d]=%d\n",i,i+l,w[i][i+l]);*/
printf("%lld\n",dp[n][p]);
return ;
}

题解——洛谷P4767 [IOI2000]邮局(区间DP)的更多相关文章

  1. 洛谷P2470 [SCOI2007]压缩(区间dp)

    题意 题目链接 Sol 神仙题Orz 考虑区间dp,如果我们只设\(f[l][r]\)表示\(s_{lr}\)被压缩的最小长度,而不去关心内部\(M\)分布的话,可能在转移的时候转移出非法状态 因此考 ...

  2. 洛谷P1018乘积最大——区间DP

    题目:https://www.luogu.org/problemnew/show/P1018 区间DP+高精,注意初始化和转移的细节. 代码如下: #include<iostream> # ...

  3. 洛谷P1220关路灯——区间DP

    题目:https://www.luogu.org/problemnew/show/P1220 区间DP. 代码如下: #include<iostream> #include<cstd ...

  4. 洛谷P1040 加分二叉树(区间dp)

    P1040 加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di, ...

  5. 洛谷 P1080 石子合并 ( 区间DP )

    题意 : 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分.试设计出1个算法,计算出将N堆石子合并成1堆 ...

  6. 洛谷$P1864\ [NOI2009]$二叉查找树 区间$dp$

    正解:区间$dp$ 解题报告: 传送门$QwQ$ 首先根据二叉查找树的定义可知,数据确定了,这棵树的中序遍历就已经改变了,唯一能改变的就是通过改变权值从而改变结点的深度. 发现这里权值的值没有意义,所 ...

  7. 洛谷P1063能量项链(区间dp)

    题目描述: 给定一串序列x[],其中的每一个Xi看作看作一颗珠子,每个珠子包含两个参数,head和tail,前一颗的tail值是后一个的head值,珠子呈现环形(是一条项链),所以最后一颗的tail是 ...

  8. 洛谷 P1043 数字游戏 区间DP

    题目描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有一圈整数(一共n个),你要按顺序将其分 ...

  9. 洛谷 P1220 关路灯 区间DP

    题目描述 某一村庄在一条路线上安装了 n 盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了 ...

随机推荐

  1. codeforces 768c Jon Snow And His Favourite Number

    题意: 给出一个数列,和一种操作,以及两个数x和k. 这个操作有两个步骤: 首先把这个数列按照升序排序,然后把所有奇数位上的数字与x异或. 问执行k次操作之后,这个数列的最大值和最小值是多少. 思路: ...

  2. 2017-2018-1 20155228 《信息安全系统设计基础》第六周学习总结&课下作业

    20155228 2017-2018-1 <信息安全系统设计基础>第六周学习总结&课下作业 教材学习内容总结 异常及其种类 异常可以分为四类:中断(interrupt) ,陷阱(t ...

  3. 20165305 苏振龙《Java程序设计》第七周学习总结

    第十一章 JDBC技术在数据库开发中占有很重要的地位,JDBC操作不同的数据库仅仅是连接方式上的差异而已,使用JDBC的应用程序一旦和数据库建立连接,就可以使用JDBC提供的API操作数据库. 当查询 ...

  4. Log4J基础详解及示例大全(转)

    log4j可以通过使用配置文件的方式进行配置. 配置步骤如下: 1.定义日志组件logger 每个logger都可以拥有一个或者多个appender,每个appender表示一个日志的输出目的地,比如 ...

  5. Redis性能监控

    参考地址: redis教程:http://www.runoob.com/redis/redis-tutorial.html redis百度百科:https://baike.baidu.com/item ...

  6. Mysql相关技术细节整理

    一.错误日志相关 1.mysql错误日志所在位置 windows下,错误日志文件一般在安装目录下的data目录下.扩展名是.err的文件,也可以打开安装目录下的my.ini文件检查一下linux下,错 ...

  7. MongoDB With Spark遇到的2个错误,不能初始化和sample重复的key

    1.$sample stage could not find a non-duplicate document while using a random cursor 这个问题比较难解决,因为我用mo ...

  8. HDU 1846 Brave Game (巴什博弈)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1846 十年前读大学的时候,中国每年都要从国外引进一些电影大片,其中有一部电影就叫<勇敢者的游戏& ...

  9. UVA 11488 Hyper Prefix Sets (字典树)

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  10. Spring MVC数据绑定

    1.绑定默认数据类型 当前端请求参数较为简单的时候,后台形参可以直接使用SpringMVC提供的参数类型来绑定数据. HttpServletRequest:通过request对象获取请求信息: Htt ...