hdu5628 Clarke and math
题目地址
题意
求
\]
题解
考虑当\(k=1\)时怎么做
\]
显然可以\(O(\sqrt{n})\)
我们尝试着把它表示成狄利克雷卷积的形式
\]
考虑当\(k=2\)时是什么样子的
\]
表示成狄利克雷卷积形式即为
\]
同理可得当k为任意值时
\]
那么只需要快速幂一下就好,复杂度是\(O(nlognlogk)\)
注意不能枚举单个数的约数,时间复杂度会爆炸,我们可以枚举约数,并计算它对1~n中的数的贡献,这样复杂度是\(O(nlogn)\)的,所以总的复杂度是\(O(nlognlogk)\)
#include <bits/stdc++.h>
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
const int N = 1e5 + 10;
const int mod = 1e9 + 7;
int n, k;
int tmp[N], I[N], g[N];
void mul(int *a, int *b) {
for(int i = 1; i <= n; ++i) tmp[i] = 0;
for(int i = 1; i <= n; ++i) {
for(int j = 1; i * j <= n; ++j) {
tmp[i * j] = 1ll * (tmp[i * j] + 1ll * a[i] * b[j]) % mod;
}
}
for(int i = 1; i <= n; ++i) a[i] = tmp[i];
}
int main() {
int T; scanf("%d", &T);
while(T--) {
scanf("%d%d", &n, &k);
for(int i = 1; i <= n; ++i) scanf("%d", &g[i]), I[i] = 1;
while(k) { if(k & 1) mul(g, I); mul(I, I); k >>= 1; }
for(int i = 1; i < n; ++i) printf("%d ", g[i]); printf("%d\n", g[n]);
}
}
hdu5628 Clarke and math的更多相关文章
- 【hdu 5628】Clarke and math (Dirichlet卷积)
hdu 5628 Clarke and math 题意 Given f(i),1≤i≤n, calculate \(\displaystyle g(i) = \sum_{i_1 \mid i} \su ...
- HDU 5628 Clarke and math——卷积,dp,组合
HDU 5628 Clarke and math 本文属于一个总结了一堆做法的玩意...... 题目 简单的一个式子:给定$n,k,f(i)$,求 然后数据范围不重要,重要的是如何优化这个做法. 这个 ...
- HDU 5628 Clarke and math dp+数学
Clarke and math 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5628 Description Clarke is a patient ...
- HDU 5628 Clarke and math Dirichlet卷积+快速幂
题意:bc round 72 中文题面 分析(官方题解): 如果学过Dirichlet卷积的话知道这玩意就是g(n)=(f*1^k)(n), 由于有结合律,所以我们快速幂一下1^k就行了. 当然,强行 ...
- HDU.5628.Clarke and math(狄利克雷卷积 快速幂)
\(Description\) \[g(i)=\sum_{i_1|i}\sum_{i_2|i_1}\sum_{i_3|i_2}\cdots\sum_{i_k|i_{k-1}}f(i_k)\ mod\ ...
- HDU - 5628:Clarke and math (组合数&线性筛||迪利克雷卷积)
题意:略. 思路:网上是用卷积或者做的,不太会. 因为上一题莫比乌斯有个类似的部分,所以想到了每个素因子单独考虑. 我们用C(x^p)表示p次减少分布在K次减少里的方案数,由隔板法可知,C(x^p)= ...
- 51nod1769 Clarke and math 2
题目 实际上就是要求\(f*I^k\). 因为\(I^k\)是一个积性函数,所以我们只需要考虑如何求\(I^k(p^a)\). 把这个东西转化成一个长度为\(k\)的序列,每一位是\(\frac{i_ ...
- BestCoder Round #72
由于第一次打,只能在div2打.(这么好的机会还没AK真是丢人) T1 Clarke and chemistry 枚举题不解释(我不会告诉你我上来WA了四发的) T2 Clarke and point ...
- hdu 5563 Clarke and five-pointed star 水题
Clarke and five-pointed star Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/show ...
随机推荐
- python 正则基本方法
2017-04-11 学习python,免不了应对爬虫,初学爬虫最难理解的就是正则表达式. 比如我们要爬去网页上的某些内容,就像下面这种形式: <p>safdsf</p>< ...
- 【Linux学习一】命令查看与帮助
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 一.Linux执行命令流程:shell->bash(解释器 执行 ...
- byte以及UTF-8的转码规则
https://www.cnblogs.com/hell8088/p/9184336.html 多年来闲麻烦,只记录笔记,不曾编写BLOG,本文为原创,如需转载请标明出处 废话不说,直奔主题 asci ...
- linux dns
linux 用户相关的 root 相当于QQ群主 sudo QQ群管理员 普通用户 QQ群水军 root UID 是 0 组UID也是0 普通用户UID从1000开始 查看用户id 信 ...
- [转载]Java中的String,StringBuilder,StringBuffer三者的区别
最近在学习Java的时候,遇到了这样一个问题,就是String,StringBuilder以及StringBuffer这三个类之间有什么区别呢,自己从网上搜索了一些资料,有所了解了之后在这里整理一下, ...
- Python+OpenCV图像处理(十一)—— 图像金字塔
简介:图像金字塔是图像中多尺度表达的一种,最主要用于图像的分割,是一种以多分辨率来解释图像的有效但概念简单的结构.简单来说,图像金字塔就是用来进行图像缩放的. 进行图像缩放可以用图像金字塔,也可以使用 ...
- 关于treeMap
https://www.cnblogs.com/skywang12345/p/3310928.html
- mycat分片操作
mycat位于应用与数据库的中间层,可以灵活解耦应用与数据库,后端数据库可以位于不同的主机上.在mycat中将表分为两大类:对于数据量小且不需要做数据切片的表,称之为分片表:对于数据量大到单库性能,容 ...
- powermock+mockito+testng 单元测试pom文件
0:Supported versions PowerMock version 1.7.0 and upper has experimental support of Mockito 2. A lot ...
- Python3 离线安装TensorFlow包
Python3 离线安装TensorFlow包 1,下载包 官网地址:https://pypi.org/project/tensorflow/1.1.0rc2/#files 清华镜像:https:// ...