Numpy 机器学习三剑客之Numpy
NumPy是Python语言的一个扩充程序库。支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。Numpy内部解除了Python的PIL(全局解释器锁),运算效率极好,是大量机器学习框架的基础库!
Numpy简单创建数组
nlist = np.array([1,2,3])
print(nlist)
#[1 2 3]
Numpy查看数组属性
#ndim方法用来查看数组维度
print(nlist.ndim) # #二维数组
nlist_2 = np.array([[1,2,3],[4,5,6]])
print(nlist_2)
print(nlist_2.ndim) #[[1 2 3]
# [4 5 6]]
# #使用shape属性来大印多维数组的形状
print(nlist.shape,nlist_2.shape)
#(3,) (2, 3) #使用size方法来打印多维数组的元素个数
print(np.size(nlist))
print(np.size(nlist_2))
#
# #打印numpy多维数组的数据类型
print(type(nlist))
#<class 'numpy.ndarray'> #使用dtype属性打印多维数组内部元素的数据类型
print(nlist.dtype)
#itemsizes属性,多维数组中的数据类型大小,字节
print(nlist.itemsize)
#data属性 打印数据缓冲区 buffer
print(nlist.data)
# int32
#
# <memory at 0x0000023047DB5C48>
快速创建N维数组的api函数
#使用ones方法,自动生成元素为1的多维数组
nlist_ones = np.ones((4,4))
print(nlist_ones)
print(nlist_ones.dtype) #[[1. 1. 1. 1.]
# [1. 1. 1. 1.]
# [1. 1. 1. 1.]
# [1. 1. 1. 1.]]
#float64 #zeros
nlist_zeros = np.zeros((4,4))
print(nlist_zeros)
#[[0. 0. 0. 0.]
# [0. 0. 0. 0.]
# [0. 0. 0. 0.]
# [0. 0. 0. 0.]] #使用empty方法来生成随机多维数组,使用第二参数指定数据类型
print(nlistempty)
#[[5.e-324 5.e-324]
# [0.e+000 0.e+000]]
#[[0 0]
# [0 0]]
nlist_3 = np.array(range(24)).reshape((3,2,4))
print(nlist_3)
print(nlist_3.shape)
nlist_float = np.array([1.0,2.0])
print(nlist_float.dtype)
#使用字符串
nlist_string=np.array(['','',''])
print(nlist_string.dtype) #[[[ 0 1 2 3]
# [ 4 5 6 7]]
#
# [[ 8 9 10 11]
# [12 13 14 15]]
#
# [[16 17 18 19]
# [20 21 22 23]]]
#(3, 2, 4)
#float64
#<U1
x = [1,2,3]
x = [(1,2,3),(4,5)]
nlist = np.asarray(x)
print(nlist) #[(1, 2, 3) (4, 5)]
my_str = b"hello world"
nlist_str = np.frombuffer(my_str,dtype='S1')
print(nlist_str) #[b'h' b'e' b'l' b'l' b'o' b' ' b'w' b'o' b'r' b'l' b'd']
sum0 = np.sum(x,axis=0,keepdims=False)
print(sum0)
sum1 = np.sum(x,axis=1,keepdims=1)
sum = np.sum(x,axis=1,keepdims=0)
print(sum1,sum) #[4 6]
#[[3]
# [7]]
#[3 7]
a = np.array([[1,2],[3,4],[5,6]])
b = np.array([[10,20],[30,40],[50,60]]) #vstack方法
suma = np.vstack((a,b))
print(suma)
print("-"*30)
#hstack方法
sumb = np.hstack((a,b))
print(sumb) #[[ 1 2]
#[ 3 4]
# [ 5 6]
# [10 20]
# [30 40]
# [50 60]]
------------------------------
#[[ 1 2 10 20]
# [ 3 4 30 40]
# [ 5 6 50 60]]
nlist=np.array([[1,2],[3,4],[5,6]])
print(nlist[1][1])
print(nlist[1,1])
#删除方法 delete
#s删除nlist第二行
print(np.delete(nlist,1,axis=0))
print(np.delete(nlist,0,axis=1)) #
#
#[[1 2]
# [5 6]]
#[[2]
# [4]
# [6]]
**未完待续
Numpy 机器学习三剑客之Numpy的更多相关文章
- Python:机器学习三剑客之 NumPy
一.numpy简介 Numpy是高性能科学计算和数据分析的基础包,机器学习三剑客之一.Numpy库中最核心的部分是ndarray 对象,它封装了同构数据类型的n维数组.部分功能如下: ndarray, ...
- 机器学习三剑客之Numpy库基本操作
NumPy是Python语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.Numpy内部解除了Python的PIL(全局解释器锁),运算效率极好,是大量机 ...
- 机器学习三剑客之Numpy
Numpy NumPy是Python语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.Numpy内部解除了Python的PIL(全局解释器锁),运算效 ...
- 机器学习 三剑客 之 pandas + numpy
机器学习 什么是机器学习? 机器学习是从数据中自动分析获得规律(模型),并利用规律对未知数据进行预测 机器学习存在的目的和价值领域? 领域: 医疗.航空.教育.物流.电商 等... 目的: 让机器学习 ...
- 数据分析三剑客之numpy
Numpy 简介 数据分析三剑客:Numpy,Pandas,Matplotlib NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算, ...
- python数据分析三剑客之: Numpy
数据分析三剑客之: Numpy 一丶Numpy的使用 numpy 是Python语言的一个扩展程序库,支持大维度的数组和矩阵运算.也支持针对数组运算提供大量的数学函数库 创建ndarray # 1 ...
- 机器学习之路--Numpy
常用代码 ndarray.dtype 数据类型必须是一样的 常用代码 import numpy #numpy读取文件 world_alcohol = numpy.genfromtxt("wo ...
- 【numpy】新版本中numpy(numpy>1.17.0)中的random模块
numpy是Python中经常要使用的一个库,而其中的random模块经常用来生成一些数组,本文接下来将介绍numpy中random模块的一些使用方法. 首先查看numpy的版本: import nu ...
- 《机器学习实战》---NumPy
NumPy库函数基础: 机器学习算法涉及很多线性代数知识. NumPy库中有很多线性代数计算. 之所以用到线性代数只是为了简化不同的数据点上执行的相同数学运算.将数据表示为矩阵形式, 只需要执行简单的 ...
随机推荐
- Node入门教程(12)第十章:Node的HTTP模块
Ryan Dahl开发node的初衷就是:把Nginx非阻塞IO功能和一个高度封装的WEB服务器结合在一起的东东.所以Node初衷就是为了高性能的Web服务器去的,所以:Node的HTTP模块也是核心 ...
- 【emWin】例程二十五:窗口对象——Iconview
简介: 图标视图小工具可用于基于图标的菜单,手持式设备(如移动电话或便携式管理器)常常需要使 用这种菜单.它显示一系列的图标,每个图标都可标注可选文本.图标视图小工具支持透明度及alpha 混合处理. ...
- Office 2007 打开时总是出现配置进度框
解决办法: cmd 打开控制台 输入命令:reg add HKCU\Software\Microsoft\Office\12.0\Word\Options /v NoReReg /t REG_DWOR ...
- Mysql系列四:数据库分库分表基础理论
一.数据处理分类 1. 海量数据处理,按照使用场景主要分为两种类型: 联机事务处理(OLTP) 面向交易的处理系统,其基本特征是原始数据可以立即传送到计算机中心进行处理,并在很短的时间内给出处理结果. ...
- electron安装+运行+打包成桌面应用+打包成安装文件+开机自启动
1.初始化node项目,生成package.json文件 npm init 2.安装electron,并保存为开发依赖项 npm install electron -D 3.根目录下新建index.j ...
- juypter安装使用
安装: pip install jupyter 启动: jupyter notebook 创建文件 这里的python文件格式是ipynb,可以在download as 中选择要保存的格式. 执行: ...
- 在WPS中删除整行的快捷键是什么?
选中需要删除的行,(方法:点击最左侧的行号):按快捷键Ctrl+-(按着Ctrl不放,再按小键盘的减号“-”),“-”是删除,“+”是插入,选中行,是对行操作,选中列就是对列操作,选中单元格,就是单元 ...
- [原]openstack-kilo--issue(十八) Error parsing template file: Template format version not found.
在创建stack的时候出现的报错: ]# heat stack-create nems_demo -e AAA.yaml -f AAA.parameter.yaml Error parsing tem ...
- 【Java并发编程六】线程池
一.概述 在执行并发任务时,我们可以把任务传递给一个线程池,来替代为每个并发执行的任务都启动一个新的线程,只要池里有空闲的线程,任务就会分配一个线程执行.在线程池的内部,任务被插入一个阻塞队列(Blo ...
- Flask web开发之路六
紧接着上篇文档,写模板继承和block,URL链接和加载静态文件 模板继承和block 项目结构 主app文件代码: from flask import Flask,render_template a ...