原文地址:http://antirez.com/news/52

Hello! As promised today I did some SSD testing.

The setup: a Linux box with 24 GB of RAM, with two disks.

A) A spinning disk.
b) An SSD (Intel 320 series). The idea is, what happens if I set the SSD disk partition as a swap partition and fill Redis with a dataset larger than RAM?
It is a lot of time I want to do this test, especially now that Redis focus is only on RAM and I abandoned the idea of targeting disk for a number of reasons. I already guessed that the SSD swap setup would perform in a bad way, but I was not expecting it was *so bad*. Before testing this setup, let's start testing Redis in memory with in the same box with a 10 GB data set. IN MEMORY TEST
=== To start I filled the instance with: ./redis-benchmark -r 1000000000 -n 1000000000 -P 32 set key:rand:000000000000 foo Write load in this way is very high, more than half million SET commands processed per second using a single core: instantaneous_ops_per_sec:629782 This is possible because we using a pipeline of 32 commands per time (see -P 32), so it is possible to limit the number of sys calls involved in the processing of commands, and the network latency component as well. After a few minutes I reached 10 GB of memory used by Redis, so I tried to save the DB while still sending the same write load to the server to see what the additional memory usage due to copy on write would be in such a stress conditions: [31930] 07 Mar 12:06:48.682 * RDB: 6991 MB of memory used by copy-on-write almost 7GB of additional memory used, that is 70% more memory.
Note that this is an interesting value since it is exactly the worst case scenario you can get with Redis: 1) Peak load of more than 0.6 million writes per second.
2) Writes are completely distributed across the data set, there is no working set in this case, all the DB is the working set. But given the enormous pressure on copy on write exercised by this workload, what is the write performance in this case while the system is saving? To find the value I started a BGSAVE and at the same time started the benchmark again: $ redis-cli bgsave; ./redis-benchmark -r 1000000000 -n 1000000000 -P 32 set key:rand:000000000000 foo
Background saving started
^Ct key:rand:000000000000 foo: 251470.34 250k ops/sec was the lower number I was able to get, as once copy on write starts to happen, there is less and less copy on write happening every second, and the benchmark soon returns to 0.6 million ops per second.
The number of keys was in the order of 100 million here. Basically the result of this test is, with real hardware and persisting to a normal spinning disk, Redis performs very well as long as you have enough RAM for your data, and for the additional memory used while saving. No big news so far. SSD SWAP TEST
=== For the SSD test we still use the spinning disk attached to the system in order to persist, so that the SSD is just working as a swap partition. To fill the instance even more I just started again redis-benchmark with the same command line, since with the specific parameters, if running forever, it would set 1 billion keys, that's enough :-) Since the instance has 24 GB of physical RAM, for the test to be meaningful I wanted to add enough data to reach 50 GB of used memory. In order to speedup the process of filling the instance I disabled persistence for some time using: CONFIG SET SAVE "" While filling the instance, at some point I started a BGSAVE to force some more swapping.
Then when the BGSAVE finished, I started the benchmark again: $ ./redis-benchmark -r 1000000000 -n 1000000000 -P 32 set key:rand:000000000000 foo
^Ct key:rand:000000000000 foo: 1034.16 As you can see the results were very bad initially, probably the main hash table ended swapped. After some time it started to perform in a decent way again: $ ./redis-benchmark -r 1000000000 -n 1000000000 -P 32 set key:rand:000000000000 foo
^Ct key:rand:000000000000 foo: 116057.11 I was able to stop and restart the benchmark multiple times and still get decent performances on restarts, as long I was not saving at the same time. However performances continued to be very erratic, jumping from 200k to 50k sets per second. …. and after 10 minutes … It only went from 23 GB of memory used to 24 GB, with 2 GB of data set swapped on disk. As soon as it started to have a few GB swapped performances started to be simply too poor to be acceptable. I then tried with reads: $ ./redis-benchmark -r 1000000000 -n 1000000000 -P 32 get key:rand:000000000000
^Ct key:rand:000000000000 foo: 28934.12 Same issue, 30k ops per second both for GET and SET, and *a lot* of swap activity at the same time.
What's worse is that the system was pretty unresponsive as a whole at this point. At this point I stopped the test, the system was slow enough that filling it even more would require a lot of time, and as more data was swapped performances started to get worse. WHAT HAPPENS?
=== What happens is simple, Redis is designed to work in an environment where random access of memory is very fast.
Hash tables, and the way Redis objects are allocated is all based on this concept. Now let's give a look at the SSD 320 disk specifications: Random write (100% Span) -> 400 IOPS
Random write (8GB Span) -> 23000 IOPS Basically what happens is that at some point Redis starts to force the OS to move memory pages between RAM and swap at *every* operation performed, since we are accessed keys at random, and there are no more spare pages. CONCLUSION
=== Redis is completely useless in this way. Systems designed to work in this kind of setups like Twitter fatcache or the recently announced Facebook McDipper need to be SSD-aware, and can probably work reasonably only when a simple GET/SET/DEL model is used. I also expect that the pathological case for this systems, that is evenly distributed writes with big span, is not going to be excellent because of current SSD disk limits, but that's exactly the case Redis is trying to solve for most users. The freedom Redis gets from the use of memory allows us to serve much more complex tasks at very good peak performance and with minimal system complexity and underlying assumptions. TL;DR: the outcome of this test was expected and Redis is an in-memory system :-)

SSD卡对redis的影响的更多相关文章

  1. SSD卡对mongodb的影响

    结论 1:SSD卡显著改善磁盘IO,io占用在50%以下 2:SSD卡使mongodb性能稳定.在200并发,数据量是内存5倍的情况下仍然保证每秒1500次插入和4500次查询.     数据如下: ...

  2. win10 ssd 卡顿

    http://www.pconline.com.cn/win10/739/7395324.html

  3. 你知道CPU结构也会影响Redis性能吗?

    啦啦啦,我是卖身不卖艺的二哈,ε=(´ο`*)))唉错啦(我是开车的二哈),我又来了,铁子们一起开车呀! 今天来分析下CPU结构对Redis性能会有影响吗? 在进行Redis性能分析的时候,通常我们会 ...

  4. 深度评测丨 GaussDB(for Redis) 大 Key 操作的影响

    本文分享自华为云社区<墨天轮评测:GaussDB(for Redis)大Key操作的影响>,作者: 高斯 Redis 官方博客. 在前一篇文章<墨天轮评测:GaussDB(for R ...

  5. [转]细说Redis监控和告警

    原文  https://zhuoroger.github.io/2016/08/20/redis-monitor-and-alarm/? 对于任何应用服务和组件,都需要一套完善可靠谱监控方案. 尤其r ...

  6. mac下的改装人生——关于ssd

    这两天研究了很多关于ssd的东西,想想还是写下来把,毕竟花了这么多时间进去. 先说一下我自己的电脑把.前几天,因为嫌我的电脑是在是太卡了,准备来次升级,然后先买了个8g的内存装上,发现的确是没有死机的 ...

  7. 【转】花开正当时,十四款120/128GB SSD横向评测

    原文地址:http://www.expreview.com/19604-all.html SSD横评是最具消费指导意义的评测文章,也是各类热门SSD固态硬盘的决斗疆场.SSD评测在行业内已经有不少网站 ...

  8. Redis计算地理位置距离-GeoHash

    Redis 在 3.2 版本以后增加了地理位置 GEO 模块,意味着我们可以使用 Redis 来实现摩拜单车「附近的 Mobike」.美团和饿了么「附近的餐馆」这样的功能了. 地图元素的位置数据使用二 ...

  9. [转]SSD固态存储大观(一)

    From: http://blog.51cto.com/alanwu/1405874 Contents 1.概述... 1 2.FusionIO:Pcie SSD的始作俑者... 2 3.Intel ...

随机推荐

  1. hdu 1072 有炸弹的迷宫 (DFS)

    题意:在n×m的地图上,0表示墙,1表示空地,2表示人,3表示目的地,4表示有定时炸弹重启器.定时炸弹的时间是6,人走一步所需要的时间是1.每次可以上.下.左.右移动一格.当人走到4时如果炸弹的时间不 ...

  2. Kylin的简介与安装部署

    一.Kylin的概述 官方网址:http://kylin.apache.org/cn/ Apache Kylin™是一个开源的分布式分析引擎,提供Hadoop/Spark之上的SQL查询接口及多维分析 ...

  3. Netty handler处理类无法使用@Autowired注入bean的解决方法

    问题由来: 公司有个项目用到netty作为websocket的实现,最近打算部署双机,这使得原来在内存中的保存Channel信息的方案不再可行,需要转移到redis中,改造过程中发现通过@Autowi ...

  4. BZOJ.4903.[CTSC2017]吉夫特(Lucas DP)

    题目链接 首先\(C(n,m)\)为奇数当且仅当\(n\&m=m\). 简要证明: 因为是\(mod\ 2\),考虑Lucas定理. 在\(mod\ 2\)的情况下\(C(n,m)\)最后只会 ...

  5. [HDU5968]异或密码

    [HDU5968]异或密码 题目大意: 数据共\(T(T\le100)\)组.每组给定一个长度为\(n(n\le100)\)的非负整数序列\(A(A_i\le1024)\),\(m(m\le100)\ ...

  6. input输入框只能输入数字而且开头不能为零

    <div class="input-choseNum"> <input type="number" id="inp-chooseNu ...

  7. 实例化和设置一个优秀的php对象

    类是用于生成对象的代码模板,对象可以被说成是类的"实例" class ShopProduct{ public $title = 'default product'; // 属性也称 ...

  8. Hbase常用Shell命令

    status 查看系统状态 hbase(main):010:0> status 1 active master, 0 backup masters, 4 servers, 0 dead, 6.5 ...

  9. 网络编程(1)—TCP

    java.net 包中提供了两种常见的网络协议的支持: TCP:TCP 是传输控制协议的缩写,它保障了两个应用程序之间的可靠通信.通常用于互联网协议,被称 TCP / IP. TCP协议: 使用TCP ...

  10. DirectUI消息循环的简单封装

      一.真窗体和假窗体 首先在DirectWindow内部创建一个真窗体(基于WTL),可以接收消息 class CMessageWindow : public CWindowImpl< CMe ...