分类问题的评价指标是准确率,那么回归算法的评价指标就是MSE,RMSE,MAE、R-Squared

  MSE和MAE适用于误差相对明显的时候,大的误差也有比较高的权重,RMSE则是针对误差不是很明显的时候;MAE是一个线性的指标,所有个体差异在平均值上均等加权,所以它更加凸显出异常值,相比MSE;

  RMSLE: 主要针对数据集中有一个特别大的异常值,这种情况下,data会被skew,RMSE会被明显拉大,这时候就需要先对数据log下,再求RMSE,这个过程就是RMSLE。对低估值(under-predicted)的判罚明显多于估值过高(over-predicted)的情况(RMSE则相反)

1、MSE(Mean Squared Error)均方误差

用 真实值-预测值 然后平方之后求和平均。线性回归用MSE作为损失函数

y_preditc=reg.predict(x_test) #reg是训练好的模型
mse_test=np.sum((y_preditc-y_test)**2)/len(y_test) #跟数学公式一样的

2、RMSE(Root Mean Squared Error)均方根误差

这不就是MSE开个根号么。有意义么?其实实质是一样的。只不过用于数据更好的描述。
例如:要做房价预测,每平方是万元(真贵),我们预测结果也是万元。那么差值的平方单位应该是 千万级别的。那我们不太好描述自己做的模型效果。怎么说呢?我们的模型误差是 多少千万?。。。。。。于是干脆就开个根号就好了。我们误差的结果就跟我们数据是一个级别的,在描述模型的时候就说,我们模型的误差是多少万元。

rmse_test=mse_test ** 0.5

3、MAE (Mean absolute Error)平均绝对误差

mae_test=np.sum(np.absolute(y_preditc-y_test))/len(y_test)

4、R-Squared

  对于回归类算法而言,只探索数据预测是否准确是不足够的。除了数据本身的数值大小之外,我们还希望我们的模型能够捕捉到数据的”规律“,比如数据的分布规律,单调性等等,而是否捕获了这些信息并无法使用MSE来衡量。

  来看这张图,其中红色线是我们的真实标签,而蓝色线是我们的拟合模型。这是一种比较极端,但的确可能发生的 情况。这张图像上,前半部分的拟合非常成功,看上去我们的真实标签和我们的预测结果几乎重合,但后半部分的 拟合却非常糟糕,模型向着与真实标签完全相反的方向去了。对于这样的一个拟合模型,如果我们使用MSE来对它 进行判断,它的MSE会很小,因为大部分样本其实都被完美拟合了,少数样本的真实值和预测值的巨大差异在被均 分到每个样本上之后,MSE就会很小。但这样的拟合结果必然不是一个好结果,因为一旦我的新样本是处于拟合曲 线的后半段的,我的预测结果必然会有巨大的偏差,而这不是我们希望看到的。所以,我们希望找到新的指标,除 了判断预测的数值是否正确之外,还能够判断我们的模型是否拟合了足够多的,数值之外的信息。

  方差的本质是任意一个值和样本均值的差异,差异越大,这些值所带的信息越多。在R2和EVS中,分子是真实值和预测值之差的差值,也就是我们的模型没有捕获到的信息总量,分母是真实标签所带的信息量,所以两者都衡量 1 - 我们的模型没有捕获到的信息量占真实标签中所带的信息量的比例,所以,两者都是越接近1越好

化简上面的公式 ,分子分母同时除以m,那么分子就变成了我们的均方误差MSE,下面分母就变成了方差

  在R2中,分子是真实值和预测值之差的差值,也就是我们的模型没有捕获到的信息总量,分母是真实标签所带的信息量,所以两者都衡量 1 - 我们的模型没有捕获到的信息量占真实标签中所带的信息量的比例,所以,两者都是越接近1越好。

如果结果是 0,说明模型拟合效果很差;

如果结果是 1,说明模型无错误

三种调用方式:

  •   第一种是直接从metrics中导入r2_score,输入预测值和真实值后打分。
  •   第二种是直接从线性回归LinearRegression的接口score来进行调用。
  •   第三种是在交叉验证中,输入"r2"来调用。EVS有两 种调用方法,可以从metrics中导入,也可以在交叉验证中输入”explained_variance“来调用。

5.RMSLE(Root Mean Squared Logarithmic Error)

假如真实值为1000,若果预测值是600,那么RMSE=400, RMSLE=0.510

假如真实值为1000,若预测结果为1400, 那么RMSE=400, RMSLE=0.336

可以看出来在均方根误差相同的情况下,预测值比真实值小这种情况的错误比较大,即对于预测值小这种情况惩罚较大。

当数据当中有少量的值和真实值差值较大的时候,使用log函数能够减少这些值对于整体误差的影响。

假设下图:图的最低点是真实值:3,从图来看,越偏离真实值,误差越大。但偏左边和偏右边误差增长幅度不一样,所以对于skew数据有效。

Scikit-learn中的各种衡量指标

from sklearn.metrics import mean_squared_error #均方误差
from sklearn.metrics import mean_absolute_error #平方绝对误差
from sklearn.metrics import r2_score#R square
#调用
mean_squared_error(y_test,y_predict)
mean_absolute_error(y_test,y_predict)
r2_score(y_test,y_predict)

  

参考文献:

【1】回归评价指标MSE、RMSE、MAE、R-Squared

【2】回归模型的几个评价指标

【3】MSE与MAE的区别与如何选择

【4】L1 vs. L2 Loss function

【5】sklearn 3.3. 模型评估:对模型的预测进行量化考核

【6】机器学习基础,回归模型评估指标 - 知乎

回归评价指标MSE、RMSE、MAE、R-Squared的更多相关文章

  1. 衡量线性回归法的指标MSE, RMSE,MAE和R Square

    衡量线性回归法的指标:MSE, RMSE和MAE 举个栗子: 对于简单线性回归,目标是找到a,b 使得尽可能小 其实相当于是对训练数据集而言的,即 当我们找到a,b后,对于测试数据集而言 ,理所当然, ...

  2. 机器学习:衡量线性回归法的指标(MSE、RMSE、MAE、R Squared)

    一.MSE.RMSE.MAE 思路:测试数据集中的点,距离模型的平均距离越小,该模型越精确 # 注:使用平均距离,而不是所有测试样本的距离和,因为距离和受样本数量的影响 1)公式: MSE:均方误差 ...

  3. 【笔记】衡量线性回归法的指标 MSE,RMS,MAE以及评价回归算法 R Square

    衡量线性回归法的指标 MSE,RMS,MAE以及评价回归算法 R Square 衡量线性回归法的指标 对于分类问题来说,我们将原始数据分成了训练数据集和测试数据集两部分,我们使用训练数据集得到模型以后 ...

  4. 线性回归中常见的一些统计学术语(RSE RSS TSS ESS MSE RMSE R2 Pearson's r)

    TSS: Total Sum of Squares(总离差平方和) --- 因变量的方差 RSS: Residual Sum of Squares (残差平方和) ---  由误差导致的真实值和估计值 ...

  5. 机器学习|线性回归三大评价指标实现『MAE, MSE, MAPE』(Python语言描述)

    原文地址 ?传送门 对于回归预测结果,通常会有平均绝对误差.平均绝对百分比误差.均方误差等多个指标进行评价.这里,我们先介绍最常用的3个: 平均绝对误差(MAE) 就是绝对误差的平均值,它的计算公式如 ...

  6. 可决系数R^2和MSE,MAE,SMSE

    波士顿房价预测 首先这个问题非常好其实要完整的回答这个问题很有难度,我也没有找到一个完整叙述这个东西的资料,所以下面主要是结合我自己的理解和一些资料谈一下r^2,mean square error 和 ...

  7. r squared

    multiple r squared adjusted r squared http://web.maths.unsw.edu.au/~adelle/Garvan/Assays/GoodnessOfF ...

  8. SSE,MSE,RMSE,R-square指标讲解

    SSE(和方差.误差平方和):The sum of squares due to errorMSE(均方差.方差):Mean squared errorRMSE(均方根.标准差):Root mean ...

  9. SSE,MSE,RMSE,R-square 指标讲解

    SSE(和方差.误差平方和):The sum of squares due to error MSE(均方差.方差):Mean squared errorRMSE(均方根.标准差):Root mean ...

随机推荐

  1. 初窥scrapy爬虫

    2017-10-30  21:49:55 前言: 初步使用scrapy爬虫框架,爬取各个网站信息 系统环境: 64位win10系统,装有64位python3.6,IDE为pycharm,使用cmd命令 ...

  2. ELK之从6.3.1升级至6.6.2

    需要把原6.3.1版本升级为6.6.2版本 1,官网下载rpm包 2,升级elasticsearch和kibana rpm -U elasticsearch-6.6.2.rpm rpm -U kiba ...

  3. d7

    小数据池:int -5~256str 特殊字符,*数字20 ascii : 8位 1字节 表示1个字符unicode 32位 4个字节 表示一个字符utf- 8 1个英文 8位,1个字节 欧洲 16位 ...

  4. 蚂蚁金服缘何自研Service Mesh?

    2018年,微服务方兴未艾,Service Mesh(服务网格)又快速崛起.有观点认为,2018年可被称之为“Service Mesh元年”,在未来两年中,Service Mesh将迎来爆发式增长,成 ...

  5. 自建docker swarm体验简单之美

    之前用的阿里云容器服务,但由于acsrouting的路由错乱问题,被逼上自建docker swarm的梁山.今天尝试自己搭建docker swarm,竟然轻松搞定,简单的超乎想象. 以下是实际搭建操作 ...

  6. 关于servelet入门介绍

    servelet 容器 将前台的请求转发给后台        接受 http 表单, 后台处理操作数据库并且放回用户 .(粗劣) 手工编写第一个Servlet 1, 继承httpservlet 2, ...

  7. mysql表引擎myisam改为innodb

    1.进入数据库 2.SELECT  CONCAT('ALTER TABLE `', table_name, '` ENGINE=InnoDB;') AS sql_statements FROM    ...

  8. bc https://en.wikipedia.org/wiki/Gossip_protocol

    分布式容错性:分布式网络极其鲁棒,能够容忍部分节点的异常状态: 不可篡改性:一致提交后的数据会一直存在,不可被销毁或修改: 隐私保护性:密码学保证了数据隐私,即便数据泄露,也无法解析. 随之带来的业务 ...

  9. [hyperscan] hyperscan 1到1.5 --!!

    [hyperscan][pkg-config] hyperscan 从0到1路线图 接续前文,继续深入理解: 概述: 1.  自动机理论,是hyperscan的理论基础. https://zh.wik ...

  10. MiniHook研究

    git hub 地址: https://github.com/RaMMicHaeL/minhook