https://www.cnblogs.com/xinysu/archive/2017/05/26/6908722.html

import pymysql
from pymysql.cursors import DictCursor
import re
import os
import sys
import datetime
import time
import logging
import importlib
importlib.reload(logging)
logging.basicConfig(level=logging.DEBUG,format='%(asctime)s %(levelname)s %(message)s ')

usage=''' usage: python [script's path] [option]
ALL options need to assign:

-h : host, the database host,which database will store the results after analysis
-u : user, the db user
-p : password, the db user's password
-P : port, the db port
-f : file path, the binlog file
-tr : table name for record , the table name to store the row record
-tt : table name for transaction, the table name to store transactions
Example: python queryanalyse.py -h=127.0.0.1 -P=3310 -u=root -p=password -f=/tmp/stock_binlog.log -tt=flashback.tbtran -tr=flashback.tbrow

'''

class queryanalyse:
def __init__(self):
#初始化
self.host=''
self.user=''
self.password=''
self.port='3306'
self.fpath=''
self.tbrow=''
self.tbtran=''

self._get_db()
logging.info('assign values to parameters is done:host={},user={},password=***,port={},fpath={},tb_for_record={},tb_for_tran={}'.format(self.host,self.user,self.port,self.fpath,self.tbrow,self.tbtran))

self.mysqlconn = pymysql.connect(host=self.host, user=self.user, password=self.password, port=self.port,charset='utf8')
self.cur = self.mysqlconn.cursor(cursor=DictCursor)
logging.info('MySQL which userd to store binlog event connection is ok')

self.begin_time=''
self.end_time=''
self.db_name=''
self.tb_name=''

def _get_db(self):
#解析用户输入的选项参数值,这里对password的处理是明文输入,可以自行处理成是input格式,
#由于可以拷贝binlog文件到非线上环境分析,所以password这块,没有特殊处理
logging.info('begin to assign values to parameters')
if len(sys.argv) == 1:
print(usage)
sys.exit(1)
elif sys.argv[1] == '--help':
print(usage)
sys.exit()
elif len(sys.argv) > 2:
for i in sys.argv[1:]:
_argv = i.split('=')
if _argv[0] == '-h':
self.host = _argv[1]
elif _argv[0] == '-u':
self.user = _argv[1]
elif _argv[0] == '-P':
self.port = int(_argv[1])
elif _argv[0] == '-f':
self.fpath = _argv[1]
elif _argv[0] == '-tr':
self.tbrow = _argv[1]
elif _argv[0] == '-tt':
self.tbtran = _argv[1]
elif _argv[0] == '-p':
self.password = _argv[1]
else:
print(usage)

def create_tab(self):
#创建两个表格:一个用户存储事务情况,一个用户存储每一行数据修改的情况
#注意,一个事务可以存储多行数据修改的情况
logging.info('creating table ...')
create_tb_sql ='''CREATE TABLE IF NOT EXISTS {} (
`auto_id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`begin_time` datetime NOT NULL,
`end_time` datetime NOT NULL,
PRIMARY KEY (`auto_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
CREATE TABLE IF NOT EXISTS {} (
`auto_id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`sqltype` int(11) NOT NULL COMMENT '1 is insert,2 is update,3 is delete',
`tran_num` int(11) NOT NULL COMMENT 'the transaction number',
`dbname` varchar(50) NOT NULL,
`tbname` varchar(50) NOT NULL,
PRIMARY KEY (`auto_id`),
KEY `sqltype` (`sqltype`),
KEY `dbname` (`dbname`),
KEY `tbname` (`tbname`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
truncate table {};
truncate table {};
'''.format(self.tbtran,self.tbrow,self.tbtran,self.tbrow)

self.cur.execute(create_tb_sql)
logging.info('created table {} and {}'.format(self.tbrow,self.tbtran))

def rowrecord(self):
#处理每一行binlog
#事务的结束采用 'Xid =' 来划分
#分析结果,按照一个事务为单位存储提交一次到db
try:
tran_num=1 #事务数
record_sql='' #行记录的insert sql
tran_sql='' #事务的insert sql

self.create_tab()

with open(self.fpath,'r') as binlog_file:
logging.info('begining to analyze the binlog file ,this may be take a long time !!!')
logging.info('analyzing...')

for bline in binlog_file:

if bline.find('Table_map:') != -1:
l = bline.index('server')
n = bline.index('Table_map')
begin_time = bline[:l:].rstrip(' ').replace('#', '20')

if record_sql=='':
self.begin_time = begin_time[0:4] + '-' + begin_time[4:6] + '-' + begin_time[6:]

self.db_name = bline[n::].split(' ')[1].replace('`', '').split('.')[0]
self.tb_name = bline[n::].split(' ')[1].replace('`', '').split('.')[1]
bline=''

elif bline.startswith('### INSERT INTO'):
record_sql=record_sql+"insert into {}(sqltype,tran_num,dbname,tbname) VALUES (1,{},'{}','{}');".format(self.tbrow,tran_num,self.db_name,self.tb_name)

elif bline.startswith('### UPDATE'):
record_sql=record_sql+"insert into {}(sqltype,tran_num,dbname,tbname) VALUES (2,{},'{}','{}');".format(self.tbrow,tran_num,self.db_name,self.tb_name)

elif bline.startswith('### DELETE FROM'):
record_sql=record_sql+"insert into {}(sqltype,tran_num,dbname,tbname) VALUES (3,{},'{}','{}');".format(self.tbrow,tran_num,self.db_name,self.tb_name)

elif bline.find('Xid =') != -1:

l = bline.index('server')
end_time = bline[:l:].rstrip(' ').replace('#', '20')
self.end_time = end_time[0:4] + '-' + end_time[4:6] + '-' + end_time[6:]
tran_sql=record_sql+"insert into {}(begin_time,end_time) VALUES ('{}','{}')".format(self.tbtran,self.begin_time,self.end_time)

self.cur.execute(tran_sql)
self.mysqlconn.commit()
record_sql = ''
tran_num += 1

except Exception:
return 'funtion rowrecord error'

def binlogdesc(self):
sql=''
t_num=0
r_num=0
logging.info('Analysed result printing...\n')
#分析总的事务数跟行修改数量
sql="select 'tbtran' name,count(*) nums from {} union all select 'tbrow' name,count(*) nums from {};".format(self.tbtran,self.tbrow)
self.cur.execute(sql)
rows=self.cur.fetchall()
for row in rows:
if row['name']=='tbtran':
t_num = row['nums']
else:
r_num = row['nums']
print('This binlog file has {} transactions, {} rows are changed '.format(t_num,r_num))

# 计算 最耗时 的单个事务
# 分析每个事务的耗时情况,分为5个时间段来描述
# 这里正常应该是 以毫秒来分析的,但是binlog中,只精确时间到second
sql='''select
count(case when cost_sec between 0 and 1 then 1 end ) cos_1,
count(case when cost_sec between 1.1 and 5 then 1 end ) cos_5,
count(case when cost_sec between 5.1 and 10 then 1 end ) cos_10,
count(case when cost_sec between 10.1 and 30 then 1 end ) cos_30,
count(case when cost_sec >30.1 then 1 end ) cos_more,
max(cost_sec) cos_max
from
(
select
auto_id,timestampdiff(second,begin_time,end_time) cost_sec
from {}
) a;'''.format(self.tbtran)
self.cur.execute(sql)
rows=self.cur.fetchall()

for row in rows:
print('The most cost time : {} '.format(row['cos_max']))
print('The distribution map of each transaction costed time: ')
print('Cost time between 0 and 1 second : {} , {}%'.format(row['cos_1'],int(row['cos_1']*100/t_num)))
print('Cost time between 1.1 and 5 second : {} , {}%'.format(row['cos_5'], int(row['cos_5'] * 100 / t_num)))
print('Cost time between 5.1 and 10 second : {} , {}%'.format(row['cos_10'], int(row['cos_10'] * 100 / t_num)))
print('Cost time between 10.1 and 30 second : {} , {}%'.format(row['cos_30'], int(row['cos_30'] * 100 / t_num)))
print('Cost time > 30.1 : {} , {}%\n'.format(row['cos_more'], int(row['cos_more'] * 100 / t_num)))

# 计算 单个事务影响行数最多 的行数量
# 分析每个事务 影响行数 情况,分为5个梯度来描述
sql='''select
count(case when nums between 0 and 10 then 1 end ) row_1,
count(case when nums between 11 and 100 then 1 end ) row_2,
count(case when nums between 101 and 1000 then 1 end ) row_3,
count(case when nums between 1001 and 10000 then 1 end ) row_4,
count(case when nums >10001 then 1 end ) row_5,
max(nums) row_max
from
(
select
count(*) nums
from {} group by tran_num
) a;'''.format(self.tbrow)
self.cur.execute(sql)
rows=self.cur.fetchall()

for row in rows:
print('The most changed rows for each row: {} '.format(row['row_max']))
print('The distribution map of each transaction changed rows : ')
print('Changed rows between 1 and 10 second : {} , {}%'.format(row['row_1'],int(row['row_1']*100/t_num)))
print('Changed rows between 11 and 100 second : {} , {}%'.format(row['row_2'], int(row['row_2'] * 100 / t_num)))
print('Changed rows between 101 and 1000 second : {} , {}%'.format(row['row_3'], int(row['row_3'] * 100 / t_num)))
print('Changed rows between 1001 and 10000 second : {} , {}%'.format(row['row_4'], int(row['row_4'] * 100 / t_num)))
print('Changed rows > 10001 : {} , {}%\n'.format(row['row_5'], int(row['row_5'] * 100 / t_num)))

# 分析 各个行数 DML的类型情况
# 描述 delete,insert,update的分布情况
sql='select sqltype ,count(*) nums from {} group by sqltype ;'.format(self.tbrow)
self.cur.execute(sql)
rows=self.cur.fetchall()

print('The distribution map of the {} changed rows : '.format(r_num))
for row in rows:

if row['sqltype']==1:
print('INSERT rows :{} , {}% '.format(row['nums'],int(row['nums']*100/r_num)))
if row['sqltype']==2:
print('UPDATE rows :{} , {}% '.format(row['nums'],int(row['nums']*100/r_num)))
if row['sqltype']==3:
print('DELETE rows :{} , {}%\n '.format(row['nums'],int(row['nums']*100/r_num)))

# 描述 影响行数 最多的表格
# 可以分析是哪些表格频繁操作,这里显示前10个table name
sql = '''select
dbname,tbname ,
count(*) ALL_rows,
count(*)*100/{} per,
count(case when sqltype=1 then 1 end) INSERT_rows,
count(case when sqltype=2 then 1 end) UPDATE_rows,
count(case when sqltype=3 then 1 end) DELETE_rows
from {}
group by dbname,tbname
order by ALL_rows desc
limit 10;'''.format(r_num,self.tbrow)
self.cur.execute(sql)
rows = self.cur.fetchall()

print('The distribution map of the {} changed rows : '.format(r_num))
print('tablename'.ljust(50),
'|','changed_rows'.center(15),
'|','percent'.center(10),
'|','insert_rows'.center(18),
'|','update_rows'.center(18),
'|','delete_rows'.center(18)
)
print('-------------------------------------------------------------------------------------------------------------------------------------------------')
for row in rows:
print((row['dbname']+'.'+row['tbname']).ljust(50),
'|',str(row['ALL_rows']).rjust(15),
'|',(str(int(row['per']))+'%').rjust(10),
'|',str(row['INSERT_rows']).rjust(10)+' , '+(str(int(row['INSERT_rows']*100/row['ALL_rows']))+'%').ljust(5),
'|',str(row['UPDATE_rows']).rjust(10)+' , '+(str(int(row['UPDATE_rows']*100/row['ALL_rows']))+'%').ljust(5),
'|',str(row['DELETE_rows']).rjust(10)+' , '+(str(int(row['DELETE_rows']*100/row['ALL_rows']))+'%').ljust(5),
)
print('\n')

logging.info('Finished to analyse the binlog file !!!')

def closeconn(self):
self.cur.close()
logging.info('release db connections\n')

def main():
p = queryanalyse()
p.rowrecord()
p.binlogdesc()
p.closeconn()

if __name__ == "__main__":
main()

基于binlog来分析mysql的行记录修改情况的更多相关文章

  1. 基于binlog来分析mysql的行记录修改情况(python脚本分析)

          最近写完mysql flashback,突然发现还有有这种使用场景:有些情况下,可能会统计在某个时间段内,MySQL修改了多少数据量?发生了多少事务?主要是哪些表格发生变动?变动的数量是怎 ...

  2. 使用Anemometer分析MySQL慢查询记录

    数据库管理员一般是用percona的toolkit工具来分析MySQL慢查询记录,但是不够直观. 下面介绍一款比较直观的工具来统计分析MySQL慢查询记录anemometer. 在使用之前需要安装pe ...

  3. mysql之行(记录)的详细操作

    在Mysql管理软件中, 可以通过sql语句中的dml语言来实现数据的操作, 包括 使用INSERT实现数据的插入 UPDATE实现数据的更新 使用DELETE实现数据的删除 使用SELECT查询数据 ...

  4. MySql之行记录的详细操作,创建用户以及库表的授权

    一 介绍 MySQL数据操作: DML ======================================================== 在MySQL管理软件中,可以通过SQL语句中的 ...

  5. mysql基于binlog回滚工具_flashback(python版本)

        update.delete的条件写错甚至没有写,导致数据操作错误,需要恢复被误操作的行记录.这种情形,其实时有发生,可以选择用备份文件+binlog来恢复到测试环境,然后再做数据修复,但是这样 ...

  6. 百万年薪python之路 -- MySQL数据库之 MySQL行(记录)的操作(一)

    MySQL的行(记录)的操作(一) 1. 增(insert) insert into 表名 value((字段1,字段2...); # 只能增加一行记录 insert into 表名 values(字 ...

  7. MySQL数据库备份还原(基于binlog的增量备份)

    MySQL数据库备份还原(基于binlog的增量备份) 一.简介 1.增量备份      增量备份 是指在一次全备份或上一次增量备份后,以后每次的备份只需备份与前一次相比增加或者被修改的文件.这就意味 ...

  8. MySQL基于binlog主从复制

    MySQL复制介绍 默认情况 下复制是异步进行的,从库也不需要一直连接到主库来同步数据 MySQL复制的数据粒度可以是主实例上所有的数据库,也可以是指定的一个或多个数据库 ,也可以是一个数据库里的指定 ...

  9. (4.11)mysql备份还原——mysql闪回技术(基于binlog)

    0.闪回技术与工具简介 mysql闪回工具比较流行三大类: [0.1]官方的mysqlbinlog:支持数据库在线/离线,用脚本处理binlog的输出,转化成对应SQL再执行.通用性不好,对正则.se ...

随机推荐

  1. HDU 1846 Brave Game(巴什博弈超简单题)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=1846 Problem Description 十年前读大学的时候,中国每年都要从国外引进一些电影大片, ...

  2. href和src的区别

    虽然一直在用这两个属性,但是一直没有具体的去区分和了解这两个属性的区别,今天就来看看 href标识超文本引用,用在link和a等元素上,href是引用和页面关联,是在当前元素和引用资源之间建立联系 s ...

  3. 微软Power BI 每月功能更新系列——12月Power BI 新功能学习

    Power BI Desktop12月产品功能摘要 Power BI 作为实力宠粉达人每月更新不来点新花样,怎么对得起翘首期待的实力铁粉您嘞!一起来看看这一次的Power BI版本的更新又给我们带来了 ...

  4. 2.18 爬页面源码(page_source)

    2.18 爬页面源码(page_source) 前言有时候通过元素的属性的查找页面上的某个元素,可能不太好找,这时候可以从源码中爬出想要的信息.selenium的page_source方法可以获取到页 ...

  5. 【转载】 BN(batch normalization)

    原文地址: https://blog.csdn.net/qq_35608277/article/details/79212700 ----------------------------------- ...

  6. ___security_cookie机制

    .text:00411500 ; int __cdecl wmainCRTStartup().text:00411500 _wmainCRTStartup proc near             ...

  7. python基于并发与socket实现远程文件传输程序

    FTP程序 Client: * bin/start.py 程序入口 * conf/配置文件存放 * core/ * auth.py 登陆,注册以及上传下载查看当前文件夹下文件以及删除功能存放 * cl ...

  8. flask使用蓝图,创建副本

    随着flask的发展,flask框架越来越复杂,我们需要进行模块化处理,因为之前学过python模块化管理,我可以对一个flask程序进行简单的模块化处理. 我们都有一个博客程序,由此可知博客的前端界 ...

  9. 牛客G-指纹锁【一题三解】

    链接:https://www.nowcoder.com/acm/contest/136/G来源:牛客网 题目描述     HA实验有一套非常严密的安全保障体系,在HA实验基地的大门,有一个指纹锁.   ...

  10. 【HDOJ3567】【预处理bfs+映射+康拓展开hash】

    http://acm.hdu.edu.cn/showproblem.php?pid=3567 Eight II Time Limit: 4000/2000 MS (Java/Others)    Me ...