二、Linear Regression 练习(转载)
转载链接:http://www.cnblogs.com/tornadomeet/archive/2013/03/15/2961660.html
前言
本文是多元线性回归的练习,这里练习的是最简单的二元线性回归,参考斯坦福大学的教学网http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex2/ex2.html。本题给出的是50个数据样本点,其中x为这50个小朋友到的年龄,年龄为2岁到8岁,年龄可有小数形式呈现。Y为这50个小朋友对应的身高,当然也是小数形式表示的。现在的问题是要根据这50个训练样本,估计出3.5岁和7岁时小孩子的身高。通过画出训练样本点的分布凭直觉可以发现这是一个典型的线性回归问题。
matlab函数介绍:
legend:
比如legend('Training data', 'Linear regression'),它表示的是标出图像中各曲线标志所代表的意义,这里图像的第一条曲线(其实是离散的点)表示的是训练样本数据,第二条曲线(其实是一条直线)表示的是回归曲线。
hold on, hold off:
hold on指在前一幅图的情况下打开画纸,允许在上面继续画曲线。hold off指关闭前一副画的画纸。
linspace:
比如linspace(-3, 3, 100)指的是给出-3到3之间的100个数,均匀的选取,即线性的选取。
logspace:
比如logspace(-2, 2, 15),指的是在10^(-2)到10^(2)之间选取15个数,这些数按照指数大小来选取,即指数部分是均匀选取的,但是由于都取了10为底的指数,所以最终是服从指数分布选取的。
实验结果:
训练样本散点和回归曲线预测图:

损失函数与参数之间的曲面图:

损失函数的等高线图:

程序代码及注释:
(1)采用正规方程求解:
%%方法一
x = load('ex2x.dat');
y = load('ex2y.dat');
plot(x,y,'*')
xlabel('height')
ylabel('age')
x = [ones(size(x),),x];
w=inv(x'*x)*x'*y
hold on
%plot(x,0.0639*x+0.7502)
plot(x(:,),0.0639*x(:,)+0.7502)%更正后的代码
(2)采用BGD方法:
% Exercise Linear Regression % Data is roughly based on CDC growth figures
% for boys
%
% x refers to a boy's age
% y is a boy's height in meters
% clear all; close all; clc
x = load('ex2x.dat'); y = load('ex2y.dat'); m = length(y); % number of training examples % Plot the training data
figure; % open a new figure window
plot(x, y, 'o');
ylabel('Height in meters')
xlabel('Age in years') % Gradient descent
x = [ones(m, ) x]; % Add a column of ones to x
theta = zeros(size(x(,:)))'; % initialize fitting parameters
MAX_ITR = ;
alpha = 0.07; for num_iterations = :MAX_ITR
% This is a vectorized version of the
% gradient descent update formula
% It's also fine to use the summation formula from the videos % Here is the gradient
grad = (/m).* x' * ((x * theta) - y); % Here is the actual update
theta = theta - alpha .* grad; % Sequential update: The wrong way to do gradient descent
% grad1 = (/m).* x(:,)' * ((x * theta) - y);
% theta() = theta() + alpha*grad1;
% grad2 = (/m).* x(:,)' * ((x * theta) - y);
% theta() = theta() + alpha*grad2;
end
% print theta to screen
theta % Plot the linear fit
hold on; % keep previous plot visible
plot(x(:,), x*theta, '-')
legend('Training data', 'Linear regression')%标出图像中各曲线标志所代表的意义
hold off % don't overlay any more plots on this figure,指关掉前面的那幅图 % Closed form solution for reference
% You will learn about this method in future videos
exact_theta = (x' * x)\x' * y % Predict values for age 3.5 and
predict1 = [, 3.5] *theta
predict2 = [, ] * theta % Calculate J matrix % Grid over which we will calculate J
theta0_vals = linspace(-, , );
theta1_vals = linspace(-, , ); % initialize J_vals to a matrix of 's
J_vals = zeros(length(theta0_vals), length(theta1_vals)); for i = :length(theta0_vals)
for j = :length(theta1_vals)
t = [theta0_vals(i); theta1_vals(j)];
J_vals(i,j) = (0.5/m) .* (x * t - y)' * (x * t - y);
end
end %Surf() :绘制某一区间内的完整曲面;matlab的surf函数中是在z的线性存储中,先固定y然后移动x,顺序选取。也就是说,Z(i,j)是在x(j),y(i)时候选取的。所以必须在绘制图形的时候对z转置
J_vals = J_vals';
% Surface plot
figure;
surf(theta0_vals, theta1_vals, J_vals)
xlabel('\theta_0'); ylabel('\theta_1'); % Contour plot
figure;
% Plot J_vals as contours spaced logarithmically between 0.01 and
contour(theta0_vals, theta1_vals, J_vals, logspace(-, , ))%画出等高线
xlabel('\theta_0'); ylabel('\theta_1');%类似于转义字符,但是最多只能是到参数0~
参考资料:
二、Linear Regression 练习(转载)的更多相关文章
- 转载 Deep learning:二(linear regression练习)
前言 本文是多元线性回归的练习,这里练习的是最简单的二元线性回归,参考斯坦福大学的教学网http://openclassroom.stanford.edu/MainFolder/DocumentPag ...
- 转载 Deep learning:三(Multivariance Linear Regression练习)
前言: 本文主要是来练习多变量线性回归问题(其实本文也就3个变量),参考资料见网页:http://openclassroom.stanford.edu/MainFolder/DocumentPage. ...
- [UFLDL] Linear Regression & Classification
博客内容取材于:http://www.cnblogs.com/tornadomeet/archive/2012/06/24/2560261.html Deep learning:六(regulariz ...
- 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...
- 线性回归、梯度下降(Linear Regression、Gradient Descent)
转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 实例 首先举个例子,假设我们有一个二手房交易记录的数据集,已知房屋面积.卧室数量和房屋的交易价格,如下表: ...
- ISLR系列:(1)线性回归 Linear Regression
Linear Regression 此博文是 An Introduction to Statistical Learning with Applications in R 的系列读书笔记,作为本 ...
- 机器学习经典算法具体解释及Python实现--线性回归(Linear Regression)算法
(一)认识回归 回归是统计学中最有力的工具之中的一个. 机器学习监督学习算法分为分类算法和回归算法两种,事实上就是依据类别标签分布类型为离散型.连续性而定义的. 顾名思义.分类算法用于离散型分布预測, ...
- 贝叶斯线性回归(Bayesian Linear Regression)
贝叶斯线性回归(Bayesian Linear Regression) 2016年06月21日 09:50:40 Duanxx 阅读数 54254更多 分类专栏: 监督学习 版权声明:本文为博主原 ...
- Multivariance Linear Regression练习
%% 方法一:梯度下降法 x = load('E:\workstation\data\ex3x.dat'); y = load('E:\workstation\data\ex3y.dat'); x = ...
随机推荐
- 【BZOJ2003】[HNOI2010]矩阵(搜索)
[BZOJ2003][HNOI2010]矩阵(搜索) 题面 懒得粘了,不难找吧. 题解 看的学长写的题解,也懒得写了 大概是这样的. 不难发现只需要确定第一行和第一列就能确定答案,而确定第一行之后每确 ...
- BZOJ 5308 [ZJOI2018] Day2T2 胖 | 二分 ST表
题目链接 LOJ 2529 BZOJ 5308 题解 这么简单的题 为什么考场上我完全想不清楚 = = 对于k个关键点中的每一个关键点\(a\),二分它能一度成为哪些点的最短路起点(显然这些点在一段包 ...
- luogu4269 Snow Boots G (并查集)
对于某个靴子,如果0代表某个格能走,1代表不能走,那么只要连续的1的个数的最大值>=靴子的步长,那这个靴子就不能用. 那么只要对靴子和格子都按深度排个序,然后从大到小来扫一遍(靴子越来越浅,能走 ...
- virtualenv 包管理
创建虚拟环境: 1) pip install virtualenv 2) virtualenv DemoEnv(虚拟环境名) 3) 此处windows和linux不同系统下的文件结构略有不同 lin ...
- service的生命周期
Managing the Lifecycle of a Service service的生命周期,从它被创建开始,到它被销毁为止,可以有两条不同的路径: A started service 被开启的s ...
- A1015. Reversible Primes
A reversible prime in any number system is a prime whose "reverse" in that number system i ...
- C++11并发——多线程std::thread (一)
https://www.cnblogs.com/haippy/p/3284540.html 与 C++11 多线程相关的头文件 C++11 新标准中引入了四个头文件来支持多线程编程,他们分别是< ...
- wget一个网站很慢的原因
今天wget一个网站时,发现很慢: # wget www.baidu.com ---- ::-- http://www.baidu.com/ Resolving www.baidu.com... 14 ...
- Python练习1
一.linux,基于文件大小,创建时间,修改时间,文件内容,文件名称等进行查找汇总和输出 2019-01-04 只操作文本文件 #!/usr/bin/env python # -*- coding: ...
- python - how to sort
python - how to sort overview Key function (★★★★★) OPerator module functions asc and desc 升序和降序 Over ...