MapReduce--平均分,最高,低分以及及格率的计算
MapReduce--平均分,最高,低分以及及格率的计算
计算班级的平均分,以及个人的最高最低分,以及每个班级的及格率。
来先看一下我的数据。
时间 班级 姓名 科目 成绩
20180501 1708a1 li bishi 80
20180501 1708a1 li jishi 55
20180501 1708a1 li project 90
20180501 1708a1 li2 bishi 80
20180501 1708a1 li2 jishi 20
20180501 1708a1 li2 project 90
20180501 1708a1 li3 bishi 50
20180501 1708a1 li3 jishi 70
20180501 1708a1 li3 project 60
20180501 1708a1 zhangsan bishi 88
20180501 1708a1 zhangsan jishi 55
20180501 1708a1 zhangsan project 98
20180501 1708a1 lishi bishi 18
20180501 1708a1 lishi jishi 15
20180501 1708a1 lishi project 15
20180501 1708a1 wangwu bishi 88
20180501 1708a1 wangwu jishi 76
20180501 1708a1 wangwu project 70
20180501 1708a2 li1 bishi 80
20180501 1708a2 li1 jishi 71
20180501 1708a2 li1 project 96
20180501 1708a2 li2 bishi 80
20180501 1708a2 li2 jishi 26
20180501 1708a2 li2 project 90
20180501 1708a2 li3 bishi 80
20180501 1708a2 li3 jishi 55
20180501 1708a2 li3 project 90
20180501 1708a2 zhangliang bishi 81
20180501 1708a2 zhangliang jishi 55
20180501 1708a2 zhangliang project 98
20180501 1708a2 liuli bishi 70
20180501 1708a2 liuli jishi 95
20180501 1708a2 liuli project 75
20180501 1708a2 wangwu bishi 80
20180501 1708a2 wangwu jishi 76
20180501 1708a2 wangwu project 70
20180501 1708a2 zhangxi bishi 18
20180501 1708a2 zhangxi jishi 16
20180501 1708a2 zhangxi project 10
数据之间是空格。。。。
代码来了 -- 平均分,最高分,最低分
package com.huhu.day01; import java.io.IOException; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /**
* 切割文本: 平均分,最高低分
*
* @author huhu_k
*
*/
public class HomeWork2 { // map
public static class MyMapper extends Mapper<LongWritable, Text, Text, Text> {
Text keys = new Text();
Text values = new Text(); @Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
// 数据切割方式(文本中的内容)
// 按行分
String[] line = value.toString().split(" ");
keys.set(line[0] + ":" + line[2]);
values.set(line[3] + ":" + line[4]);
context.write(keys, values);
}
} // reduce
public static class MyReducer extends Reducer<Text, Text, Text, Text> { @Override
protected void reduce(Text key, Iterable<Text> value, Context context)
throws IOException, InterruptedException {
int max = Integer.MIN_VALUE;
int min = Integer.MAX_VALUE;
// 和
int sum = 0;
// 人数
int count = 0;
// 分数
int score = 0;
String classs = "";
for (Text t : value) {
classs = t.toString().split(":")[0];
score = Integer.parseInt(t.toString().split(":")[1]);
if (max < score)
max = score;
if (min > score)
min = score;
switch (classs) {
case "bishi":
score += score * 0.4;
break;
case "jishi":
score += score * 0.3;
break;
case "project":
score += score * 0.3;
break;
}
sum += score;
count++;
}
int avg = (int) sum / count;
String[] student = key.toString().split(":");
Text ky = new Text(student[0] + "\t" + student[1]);
context.write(ky, new Text("平均分 " + avg));
context.write(ky, new Text("最高值为 " + max));
context.write(ky, new Text("最低值 " + min));
} } public static void main(String[] args) throws Exception { // 配置容器
Configuration conf = new Configuration();
// 创建一个job
@SuppressWarnings("deprecation")
Job job = new Job(conf, "MyMapReduce Two");
// 配置job
job.setJarByClass(HomeWork2.class);
job.setMapperClass(MyMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class); job.setReducerClass(MyReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class); // 输入输出
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1])); // 执行程序
boolean waitForCompletion = job.waitForCompletion(true);
System.exit(waitForCompletion ? 0 : 1); } }
运行结果:
2.及格率
package com.huhu.day01; import java.io.IOException;
import java.text.DecimalFormat;
import java.util.HashMap;
import java.util.Map; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /**
* 切割文本:及格率
*
* @author huhu_k
*
*/
public class HomeWork3 { // map
public static class MyMapper extends Mapper<LongWritable, Text, Text, Text> {
Text keys = new Text();
Text values = new Text(); @Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
// 数据切割方式(文本中的内容)
// 按行分
String[] line = value.toString().split(" ");
keys.set(line[0] + ":" + line[1]);
context.write(keys, value);
}
} // reduce
public static class MyReducer extends Reducer<Text, Text, Text, Text> {
Map<String, Double> map = new HashMap<>();
Map<String, String> maps = new HashMap<>(); @Override
protected void reduce(Text key, Iterable<Text> value, Context context)
throws IOException, InterruptedException {
for (Text t : value) {
String[] values = t.toString().split(" ");
String student = values[2] + ":" + values[0] + ":" + values[1];
String subject = values[3];
double score = Integer.valueOf(values[4]);
if ("bishi".equals(subject)) {
score *= 0.4;
} else {
score *= 0.3;
}
// 如果map中有学生,累加学生的没门课程的分数
if (map.containsKey(student)) {
double scores = map.get(student);
scores += score;
map.put(student, scores);
} else {
// 第一次进入时不包含,则直接添加
map.put(student, score);
}
} for (Map.Entry<String, Double> m : map.entrySet()) {
String classname = m.getKey().split(":")[2];
Double score = m.getValue();
if (maps.containsKey(classname) && score >= 60) {
String k = Integer.parseInt(maps.get(classname).split(":")[0]) + 1 + "";
String v = Integer.parseInt(maps.get(classname).split(":")[1]) + 1 + "";
maps.put(classname, k + ":" + v);
} else if (maps.containsKey(classname) && score < 60) {
String k = Integer.parseInt(maps.get(classname).split(":")[0]) + 1 + "";
String v = Integer.parseInt(maps.get(classname).split(":")[1]) + "";
maps.put(classname, k + ":" + v);
} else if (!maps.containsKey(classname) && score < 60) {
maps.put(classname, "1:0");
} else if (!maps.containsKey(classname) && score >= 60) {
maps.put(classname, "1:1");
}
} } @Override
protected void cleanup(Reducer<Text, Text, Text, Text>.Context context)
throws IOException, InterruptedException {
for (Map.Entry<String, String> m : maps.entrySet()) {
DecimalFormat d = new DecimalFormat("0.00%");
double pass = Double.valueOf(m.getValue().split(":")[1]) / Double.valueOf(m.getValue().split(":")[0]);
context.write(new Text(m.getKey()), new Text("及格率为:" + d.format(pass)));
}
}
} public static void main(String[] args) throws Exception { // 配置容器
Configuration conf = new Configuration();
// 创建一个job
@SuppressWarnings("deprecation")
Job job = new Job(conf, "MyMapReduce Count");
// 配置job
job.setJarByClass(HomeWork3.class);
job.setMapperClass(MyMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class); job.setReducerClass(MyReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class); // 输入输出
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1])); // 执行程序
boolean waitForCompletion = job.waitForCompletion(true);
System.exit(waitForCompletion ? 0 : 1); } }
MapReduce一个分布式并行离线计算框架。我们只需要知道map(),reduce(),input,output,剩下的由框架完成
基于yarn的工作流程
MapReduce--平均分,最高,低分以及及格率的计算的更多相关文章
- MapReduce Input Split 输入分/切片
MapReduce Input Split(输入分/切片)详解 public static long getMaxSplitSize(JobContext context) { return cont ...
- mysql计算时间差-本例为计算分钟差然后/60计算小时保留一位小数,由于直接得小时只会取整
-- ORDER_TIME datetime NOT NULL(字段类型)SELECTso.`ID`,so.`ORDER_TIME`,NOW(),CONCAT(ROUND(TIMESTAMPDIFF( ...
- sql面试50题------(11-20)
文章目录 11.查询至少有一门课与学号为'01'的学生所学课程相同的学生的学号和姓名 12.查询和'01'号同学所学课程完全相同的其他同学的学号 13.查询两门及其以上不及格课程的同学的学号,姓名及其 ...
- MapReduce原理与设计思想
简单解释 MapReduce 算法 一个有趣的例子 你想数出一摞牌中有多少张黑桃.直观方式是一张一张检查并且数出有多少张是黑桃? MapReduce方法则是: 给在座的所有玩家中分配这摞牌 让每个玩家 ...
- MapReduce: 一种简化的大规模集群数据处理法
(只有文字没有图,图请参考http://research.google.com/archive/mapreduce.html) MapReduce: 一种简化的大规模集群数据处理法 翻译:风里来雨里去 ...
- MapReduce极简教程
一个有趣的例子 你想数出一摞牌中有多少张黑桃.直观方式是一张一张检查并且数出有多少张是黑桃? MapReduce方法则是: 给在座的所有玩家中分配这摞牌 让每个玩家数自己手中的牌有几张是黑桃,然后 ...
- 大数据 --> MapReduce原理与设计思想
MapReduce原理与设计思想 简单解释 MapReduce 算法 一个有趣的例子:你想数出一摞牌中有多少张黑桃.直观方式是一张一张检查并且数出有多少张是黑桃? MapReduce方法则是: 给在座 ...
- Hadoop(17)-MapReduce框架原理-MapReduce流程,Shuffle机制,Partition分区
MapReduce工作流程 1.准备待处理文件 2.job提交前生成一个处理规划 3.将切片信息job.split,配置信息job.xml和我们自己写的jar包交给yarn 4.yarn根据切片规划计 ...
- 转:MapReduce原理与设计思想
转自:http://www.cnblogs.com/wuyudong/p/mapreduce-principle.html 简单解释 MapReduce 算法 一个有趣的例子 你想数出一摞牌中有多少张 ...
随机推荐
- 原生js仿jquery一些常用方法
原生js仿jquery一些常用方法 下面小编就为大家带来一篇原生js仿jquery一些常用方法(必看篇).小编觉得挺不错的,现在就分享给大家,也给大家做个参考.一起跟随小编过来看看吧 最近迷上了原 ...
- window7安装python的xgboost库方法
window7安装python的xgboost库方法 1.下载xgboost-master.zip文件,而不是xgboost-0.4a30.tar.gz,xgboost-0.4a30.tar.gz是更 ...
- python-ConfigParser模块【读写配置文件】
对python 读写配置文件的具体方案的介绍 1,函数介绍 import configParser 如果Configparser无效将导入的configParser 的C小写 1.1.读取配置文件 - ...
- Codeforces 785 D. Anton and School - 2
题目链接:http://codeforces.com/contest/785/problem/D 我们可以枚举分界点,易知分界点左边和右边分别有多少个左括号和右括号,为了不计算重复我们强制要求选择分界 ...
- scss切页面
html <div class="data-list"> <div class="data-list-item"> <div cl ...
- The content of element type "web-app" must match "(icon?,display-name?,description?,distributable?,context-param*,filter*,filter-mapping*,listener*,servlet*,servlet- mapping*,session-config?,mime-map
修改了一下web.xml,加入了一个<filter>,然后就报这样的错??? The content of element type "web-app" must ma ...
- HttpClient的POST请求返回302解决
HttpClient请求POST提示302,而且返回的response中的Localtion是我访问时使用的URL, 例如:我使用的URL是https://bbs.csdn.net?client_id ...
- 力扣(LeetCode)15. 三数之和
给定一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?找出所有满足条件且不重复的三元组. 注意:答案中不可以包含重复的三元组. ...
- ButterKnife RadioGroup选择事件
ButterKnife 的点击事件都很清晰,在使用RadioGroup控件时的方法: <!-- 定义一组单选框 --> <RadioGroup android:id="@+ ...
- C# 图片人脸识别
此程序基于 虹软人脸识别进行的开发 前提条件从虹软官网下载获取ArcFace引擎应用开发包,及其对应的激活码(App_id, SDK_key)将获取到的开发包导入到您的应用中 App_id与SDK_k ...