Description

The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is has no proper factors (it is only evenly divisible by 1 and itself). The first prime numbers are 2,3,5,7 but they quickly become less frequent. One of the interesting questions is how dense they are in various ranges. Adjacent primes are two numbers that are both primes, but there are no other prime numbers between the adjacent primes. For example, 2,3 are the only adjacent primes that are also adjacent numbers. 
Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair. You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).

Input

Each line of input will contain two positive integers, L and U, with L < U. The difference between L and U will not exceed 1,000,000.

Output

For each L and U, the output will either be the statement that there are no adjacent primes (because there are less than two primes between the two given numbers) or a line giving the two pairs of adjacent primes.

Sample Input

2 17
14 17

Sample Output

2,3 are closest, 7,11 are most distant.
There are no adjacent primes.

Source

    给出[L,R],求区间内的素数,R<=2147483647,R-L<=1000000, 注意到只用sqrt(R)以内的素数就可以筛出[L,R]里面的素数,
可以先对sqrt(MAX_INT)内的素数打一个表。对于[L,R]的询问,用小于等于sqrt(R)的素数筛一下然后统计一下就好了。注意L<2的时候
要特判一下否则容易把1也给打进去。
    

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<vector>
using namespace std;
#define LL long long
#define mp make_pair
#define pb push_back
#define inf 0x3f3f3f3f
int maxn=;
vector<int>prime;
vector<int>p;
bool is[];
void init(){
is[]=is[]=;
for(LL i=;i<=maxn;++i){
if(!is[i]) prime.push_back(i);
for(LL j=;j<prime.size()&&i*prime[j]<=maxn;j++){
is[i*prime[j]]=;
if(i%prime[j]) break;
}
}
}
void solve(LL L,LL R){
p.clear();
memset(is,,sizeof(is));
for(LL i=;i<prime.size()&&1LL*prime[i]*prime[i]<=R;i++){
LL s=L/prime[i]+(L%prime[i]>);
if(s==)s=;
for(LL j=s;j*prime[i]<=R;j++){
if(j*prime[i]>=L) is[j*prime[i]-L]=;
}
}
for(int i=;i<=R-L;i++){
if(!is[i]&&i+L>=) p.push_back(i+L);
}
}
int main(){
LL L,R;
init();
while(scanf("%lld%lld",&L,&R)!=EOF){
solve(L,R); if(p.size()<) puts("There are no adjacent primes.");
else{
int c1,c2,m1,m2;
c1=m1=p[];
c2=m2=p[];
for(int i=;i<p.size();++i){
if(p[i]-p[i-]<c2-c1){
c1=p[i-];
c2=p[i];
}
if(p[i]-p[i-]>m2-m1){
m1=p[i-];
m2=p[i];
}
}
printf("%d,%d are closest, %d,%d are most distant.\n",c1,c2,m1,m2);
}
}
return ;
}

poj-2689-素数区间筛的更多相关文章

  1. poj2689(素数区间筛法模板)

    题目链接: http://poj.org/problem?id=2689 题意: 给出一个区间 [l, r] 求其中相邻的距离最近和最远的素数对 . 其中 1 <= l <  r < ...

  2. poj 2689 Prime Distance(大区间筛素数)

    http://poj.org/problem?id=2689 题意:给出一个大区间[L,U],分别求出该区间内连续的相差最小和相差最大的素数对. 由于L<U<=2147483647,直接筛 ...

  3. poj 2689 Prime Distance(大区间素数)

    题目链接:poj 2689 Prime Distance 题意: 给你一个很大的区间(区间差不超过100w),让你找出这个区间的相邻最大和最小的两对素数 题解: 正向去找这个区间的素数会超时,我们考虑 ...

  4. 大区间素数筛选(POJ 2689)

    /* *POJ 2689 Prime Distance *给出一个区间[L,U],找出区间内容.相邻的距离最近的两个素数和距离最远的两个素数 *1<=L<U<=2147483647 ...

  5. POJ 2689.Prime Distance-区间筛素数

    最近改自己的错误代码改到要上天,心累. 这是迄今为止写的最心累的博客. Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  6. POJ - 2689 Prime Distance (区间筛)

    题意:求[L,R]中差值最小和最大的相邻素数(区间长度不超过1e6). 由于非素数$n$必然能被一个不超过$\sqrt n$的素数筛掉,因此首先筛出$[1,\sqrt R]$中的全部素数,然后用这些素 ...

  7. 素数筛 poj 2689

    素数筛 #include<stdio.h> #include<string.h> #include<algorithm> using namespace std; ...

  8. poj 2689 Prime Distance (素数二次筛法)

    2689 -- Prime Distance 没怎么研究过数论,还是今天才知道有素数二次筛法这样的东西. 题意是,要求求出给定区间内相邻两个素数的最大和最小差. 二次筛法的意思其实就是先将1~sqrt ...

  9. lightoj1197 素数双筛,可以参考poj的那题双筛

    /* 判断一个数是否是素数,只要判断这个数有没有在[2,sqrt(n)]区间的因子 同样,对于大数短区间的筛选,同样可以用这种判断方式, 先筛出sqrt(n)范围内的素数,然后用这些素数去筛出区间内的 ...

  10. POJ 2689 筛法求素数

    DES:给出一个区间[L, U].找出这个区间内相邻的距离最近的两个素数和距离最远的两个素数.其中1<=L<U<=2147483647 区间长度不超过1000000. 思路:因为给出 ...

随机推荐

  1. (zhuan) 资源|TensorFlow初学者必须了解的55个经典案例

    资源|TensorFlow初学者必须了解的55个经典案例 2017-05-27 全球人工智能 >>>>>>欢迎投稿:news@top25.cn<<< ...

  2. A successful Git branching model——经典篇

    A successful Git branching model In this post I present the development model that I’ve introduced f ...

  3. ActiveReports 大数据分析报告:公交车司乘冲突引发的刑事案件

    公交车司乘冲突刑事案件总体情况 公交车司乘冲突引发的刑事案件总量稳中有升 (注:本报告界定的“公交车司乘冲突刑事案件”,是指案件诱因为公交车司机与乘客在乘车过程中发生冲突而引发的刑事案件.包括但不限于 ...

  4. js操作css变量

    原文:http://css-live.ru/articles/dostup-k-css-peremennym-i-ix-izmenenie-spomoshhyu-javascript.html :ro ...

  5. BZOJ 1064: [Noi2008]假面舞会(dfs + 图论好题!)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1064 题意: 思路: 考虑以下几种情况: ①无环并且是树: 无环的话就是树结构了,树结构的话想一下就 ...

  6. JMeter 生成CSV文件中文变乱码的问题

    在通过BeanShell 生成CSV文件时,写入的中文字符默认情况会变成乱码. //默认情况生成的文件是asii编码.fileName = “c:\test.csv";fos = new F ...

  7. 【Java】【THINK】

    1. 新建类,应优先考虑“组织”对象,而不是继承.这样可以保持清爽. 2. Java对象&对象句柄: 声明了一个类型的变量也就是声明了一个该类型的对象.但是这个对象只是个抽象的概念,并不会在内 ...

  8. Node.js代码模块化

    js语言发展到现在逐渐的像后端语言来,学习了一些后端语言的特性,这里主要讲述的是js语言的模块化管理 首先新建一个js文件 'use strict'; var s = 'Hello'; functio ...

  9. CentOS7 安装Perl

    官网:http://www.cpan.org/src/ wget https:.tar.gz cd perl- ./Configure -des -Dprefix=$HOME/localperl ma ...

  10. JavaScript的案例(数据校验,js轮播图,页面定时弹窗)

    1.数据校验            步骤            1.确定事件(onsubmit)并绑定一个函数            2.书写这个函数,获取数据,并绑定id            3. ...