Description

The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is has no proper factors (it is only evenly divisible by 1 and itself). The first prime numbers are 2,3,5,7 but they quickly become less frequent. One of the interesting questions is how dense they are in various ranges. Adjacent primes are two numbers that are both primes, but there are no other prime numbers between the adjacent primes. For example, 2,3 are the only adjacent primes that are also adjacent numbers. 
Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair. You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).

Input

Each line of input will contain two positive integers, L and U, with L < U. The difference between L and U will not exceed 1,000,000.

Output

For each L and U, the output will either be the statement that there are no adjacent primes (because there are less than two primes between the two given numbers) or a line giving the two pairs of adjacent primes.

Sample Input

2 17
14 17

Sample Output

2,3 are closest, 7,11 are most distant.
There are no adjacent primes.

Source

    给出[L,R],求区间内的素数,R<=2147483647,R-L<=1000000, 注意到只用sqrt(R)以内的素数就可以筛出[L,R]里面的素数,
可以先对sqrt(MAX_INT)内的素数打一个表。对于[L,R]的询问,用小于等于sqrt(R)的素数筛一下然后统计一下就好了。注意L<2的时候
要特判一下否则容易把1也给打进去。
    

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<vector>
using namespace std;
#define LL long long
#define mp make_pair
#define pb push_back
#define inf 0x3f3f3f3f
int maxn=;
vector<int>prime;
vector<int>p;
bool is[];
void init(){
is[]=is[]=;
for(LL i=;i<=maxn;++i){
if(!is[i]) prime.push_back(i);
for(LL j=;j<prime.size()&&i*prime[j]<=maxn;j++){
is[i*prime[j]]=;
if(i%prime[j]) break;
}
}
}
void solve(LL L,LL R){
p.clear();
memset(is,,sizeof(is));
for(LL i=;i<prime.size()&&1LL*prime[i]*prime[i]<=R;i++){
LL s=L/prime[i]+(L%prime[i]>);
if(s==)s=;
for(LL j=s;j*prime[i]<=R;j++){
if(j*prime[i]>=L) is[j*prime[i]-L]=;
}
}
for(int i=;i<=R-L;i++){
if(!is[i]&&i+L>=) p.push_back(i+L);
}
}
int main(){
LL L,R;
init();
while(scanf("%lld%lld",&L,&R)!=EOF){
solve(L,R); if(p.size()<) puts("There are no adjacent primes.");
else{
int c1,c2,m1,m2;
c1=m1=p[];
c2=m2=p[];
for(int i=;i<p.size();++i){
if(p[i]-p[i-]<c2-c1){
c1=p[i-];
c2=p[i];
}
if(p[i]-p[i-]>m2-m1){
m1=p[i-];
m2=p[i];
}
}
printf("%d,%d are closest, %d,%d are most distant.\n",c1,c2,m1,m2);
}
}
return ;
}

poj-2689-素数区间筛的更多相关文章

  1. poj2689(素数区间筛法模板)

    题目链接: http://poj.org/problem?id=2689 题意: 给出一个区间 [l, r] 求其中相邻的距离最近和最远的素数对 . 其中 1 <= l <  r < ...

  2. poj 2689 Prime Distance(大区间筛素数)

    http://poj.org/problem?id=2689 题意:给出一个大区间[L,U],分别求出该区间内连续的相差最小和相差最大的素数对. 由于L<U<=2147483647,直接筛 ...

  3. poj 2689 Prime Distance(大区间素数)

    题目链接:poj 2689 Prime Distance 题意: 给你一个很大的区间(区间差不超过100w),让你找出这个区间的相邻最大和最小的两对素数 题解: 正向去找这个区间的素数会超时,我们考虑 ...

  4. 大区间素数筛选(POJ 2689)

    /* *POJ 2689 Prime Distance *给出一个区间[L,U],找出区间内容.相邻的距离最近的两个素数和距离最远的两个素数 *1<=L<U<=2147483647 ...

  5. POJ 2689.Prime Distance-区间筛素数

    最近改自己的错误代码改到要上天,心累. 这是迄今为止写的最心累的博客. Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  6. POJ - 2689 Prime Distance (区间筛)

    题意:求[L,R]中差值最小和最大的相邻素数(区间长度不超过1e6). 由于非素数$n$必然能被一个不超过$\sqrt n$的素数筛掉,因此首先筛出$[1,\sqrt R]$中的全部素数,然后用这些素 ...

  7. 素数筛 poj 2689

    素数筛 #include<stdio.h> #include<string.h> #include<algorithm> using namespace std; ...

  8. poj 2689 Prime Distance (素数二次筛法)

    2689 -- Prime Distance 没怎么研究过数论,还是今天才知道有素数二次筛法这样的东西. 题意是,要求求出给定区间内相邻两个素数的最大和最小差. 二次筛法的意思其实就是先将1~sqrt ...

  9. lightoj1197 素数双筛,可以参考poj的那题双筛

    /* 判断一个数是否是素数,只要判断这个数有没有在[2,sqrt(n)]区间的因子 同样,对于大数短区间的筛选,同样可以用这种判断方式, 先筛出sqrt(n)范围内的素数,然后用这些素数去筛出区间内的 ...

  10. POJ 2689 筛法求素数

    DES:给出一个区间[L, U].找出这个区间内相邻的距离最近的两个素数和距离最远的两个素数.其中1<=L<U<=2147483647 区间长度不超过1000000. 思路:因为给出 ...

随机推荐

  1. 剥开比原看代码10:比原是如何通过/create-key接口创建密钥的

    作者:freewind 比原项目仓库: Github地址:https://github.com/Bytom/bytom Gitee地址:https://gitee.com/BytomBlockchai ...

  2. pgAdmin的数据恢复

    DOC 本地添加server 1.设置备份.恢复的exe路径.一般在pgAdmin的安装路径下可以找到 2.恢复restore,备份backup

  3. 在 2016 年学 JavaScript 是一种什么样的体验?(React从入门到放弃)

    jquery 年代 vs 前端模块化 http://blog.csdn.net/offbye/article/details/52793921 ++ 嘿,我最近接到一个 Web 项目,不过老实说,我这 ...

  4. Java方法中捕获多个异常的处理机制

    /** * @author wangyunhan * @throws Exception */ public static void main(String[] argßs) throws Excep ...

  5. 【Java】【异常】

    java中2种方法处理异常:1.在发⽣异常的地方直接处理:2.将异常抛给调用者,让调⽤者处理.异常分类1.检查性异常: java.lang.Exception2.运⾏期异常: java.lang.Ru ...

  6. go 单进程并发

    demo1 // This sample program demonstrates how to create goroutines and // how the scheduler behaves. ...

  7. Springboot:没有src/main/resources目录(引入图片时(或静态资源时)发现没有该目录)

    今天想在Springboot项目想引进静态资源时,发现自己的项目里没有教程里面的 src/main/resources这个目录,目录如下 我的项目目录结构是这样的,但是还不是很清楚下面的那个src目录 ...

  8. 写了一个Hy的vscode语法高亮插件

    -------2018 8 3----------- 把函数名和参数改了,正则有点古怪,参考自带的lambda表达式才搞定 但彩色括号走了弯路,各种配图有彩色括号的插件其实很少是自己搞的,其实只要再装 ...

  9. jenkins之从0到1利用Git和Ant插件打war包并自动部署到tomcat(第四话):把war包远程部署到tomcat

    上一节介绍了如何用Ant插件来打war包,本节接着介绍如何把build好的war自动部署到tomcat中 1.先安装 Deploy to container Plugin插件 2. 在构建后操作中添加 ...

  10. seo中的竞价排名是什么

    seo中的竞价排名是什么 一.总结 一句话总结:竞价排名的基本特点是按点击付费,推广信息出现在搜索结果中(一般是靠前的位置),如果没有被用户点击,则不收取推广费. 搜索引擎的一种推广广告的方式 1.竞 ...