『CUDA C编程权威指南』第二章编程题选做
第一题
设置线程块中线程数为1024效果优于设置为1023,且提升明显,不过原因未知,以后章节看看能不能回答。
第二题
参考文件sumArraysOnGPUtimer.cu,设置block=256,新建内核,使每个线程处理两个元素。
思路很简单,将数据的虚拟内存对半分为高低两块,每一内核线程同时处理两个索引区域序列相同的数据即可:
# include <cuda_runtime.h>
# include <stdio.h>
# include <sys/time.h>
# include "common.h" __global__ void sumArraysOnGPU(float *A, float *B, float *C, const int N)
{
int i = blockIdx.x * blockDim.x + threadIdx.x; if (i < N/2) {
C[i] = A[i] + B[i];
C[i+N/2] = A[i+N/2] + B[i+N/2];
}
} int main(int argc, char **argv)
{
printf("%s Starting...\n", argv[0]); // set up device
int dev = 0;
cudaDeviceProp deviceProp;
CHECK(cudaGetDeviceProperties(&deviceProp, dev));
printf("Using Device %d: %s\n", dev, deviceProp.name);
CHECK(cudaSetDevice(dev)); // set up data size of vectors
int nElem = 1 << 24;
printf("Vector size %d\n", nElem); // malloc host memory
size_t nBytes = nElem * sizeof(float); float *h_A, *h_B, *hostRef, *gpuRef;
h_A = (float *)malloc(nBytes);
h_B = (float *)malloc(nBytes);
hostRef = (float *)malloc(nBytes);
gpuRef = (float *)malloc(nBytes); double iStart, iElaps; // initialize data at host side
iStart = cpuSecond();
initialData(h_A, nElem);
initialData(h_B, nElem);
iElaps = cpuSecond() - iStart;
printf("initialData Time elapsed %f sec\n", iElaps);
memset(hostRef, 0, nBytes);
memset(gpuRef, 0, nBytes); // add vector at host side for result checks
iStart = cpuSecond();
sumArraysOnHost(h_A, h_B, hostRef, nElem);
iElaps = cpuSecond() - iStart;
printf("sumArraysOnHost Time elapsed %f sec\n", iElaps); // malloc device global memory
float *d_A, *d_B, *d_C;
CHECK(cudaMalloc((float**)&d_A, nBytes));
CHECK(cudaMalloc((float**)&d_B, nBytes));
CHECK(cudaMalloc((float**)&d_C, nBytes)); // transfer data from host to device
CHECK(cudaMemcpy(d_A, h_A, nBytes, cudaMemcpyHostToDevice));
CHECK(cudaMemcpy(d_B, h_B, nBytes, cudaMemcpyHostToDevice));
CHECK(cudaMemcpy(d_C, gpuRef, nBytes, cudaMemcpyHostToDevice)); // invoke kernel at host side
int iLen = 512;
dim3 block (iLen);
dim3 grid ((nElem + block.x - 1) / block.x / 2);
// <<< 16384, 512 >>> Time elapsed 0.000747 sec
// <<< 32768, 512 >>> Time elapsed 0.000709 sec iStart = cpuSecond();
sumArraysOnGPU<<<grid, block>>>(d_A, d_B, d_C, nElem);
CHECK(cudaDeviceSynchronize());
iElaps = cpuSecond() - iStart;
printf("sumArraysOnGPU <<< %d, %d >>> Time elapsed %f sec\n", grid.x,
block.x, iElaps); // check kernel error
// CHECK(cudaGetLastError()) ; // copy kernel result back to host side
CHECK(cudaMemcpy(gpuRef, d_C, nBytes, cudaMemcpyDeviceToHost)); // check device results
checkResult(hostRef, gpuRef, nElem); // free device global memory
CHECK(cudaFree(d_A));
CHECK(cudaFree(d_B));
CHECK(cudaFree(d_C)); // free host memory
free(h_A);
free(h_B);
free(hostRef);
free(gpuRef); return(0);
}

第四题
参考文件sumMatrixOnGPU-2D-gril-1D-block.cu,新建内核,使每个线程处理两个元素。
思路同上,由于是二维索引,所以采取的划分是按照纵坐标y将数据对半划分,可以直观理解为沿着y/2将数据对折,然后同一个线程处理数据为两个块中对应位置即可:
# include <cuda_runtime.h>
# include <stdio.h>
# include <sys/time.h>
# include "common.h" // grid 2D block 1D
__global__ void sumMatrixsOnGPUMix(float *MatA, float *MatB, float *MatC,
int nx, int ny)
{
int ix = threadIdx.x + blockIdx.x * blockDim.x;
int iy = blockIdx.y;
int idx = iy * nx + ix; if (ix < nx && iy < ny/2) {
MatC[idx] = MatA[idx] + MatB[idx];
MatC[idx + nx*ny/2] = MatA[idx + nx*ny/2] + MatB[idx + nx*ny/2];
}
} int main(int argc, char **argv){
printf("%s Startin... \n", argv[0]); //set up device
int dev = 0;
cudaDeviceProp deviceProp;
CHECK(cudaGetDeviceProperties(&deviceProp, dev));
printf("Using Device %d: %s\n", dev, deviceProp.name);
CHECK(cudaSetDevice(dev)); // matrix size
int nx = 1<<13;
int ny = 1<<5; // 2**18 int nxy = nx * ny;
int nBytes = nxy * sizeof(float);
printf("Matrix size:nx %d, ny %d\n", nx, ny); float *h_A, *h_B, *hostRef, *gpuRef;
h_A = (float *)malloc(nBytes);
h_B = (float *)malloc(nBytes);
hostRef = (float *)malloc(nBytes);
gpuRef = (float *)malloc(nBytes); // initialize data at host side
double iStart, iElaps;
iStart = cpuSecond();
initialData(h_A, nxy);
initialData(h_B, nxy);
iElaps = cpuSecond() - iStart; memset(hostRef, 0, nBytes);
memset(gpuRef, 0, nBytes); iStart = cpuSecond();
sumMatrixsOnHost(h_A, h_B, hostRef, nx, ny);
iElaps = cpuSecond() - iStart; // malloc device global memory
float *d_MatA, *d_MatB, *d_MatC;
cudaMalloc((float **)&d_MatA, nBytes);
cudaMalloc((float **)&d_MatB, nBytes);
cudaMalloc((float **)&d_MatC, nBytes); // transfer data from host to device
cudaMemcpy(d_MatA, h_A, nBytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_MatB, h_B, nBytes, cudaMemcpyHostToDevice); // invoke kernel at host to device
dim3 block (256); // 2维块设置
dim3 grid ((nx+block.x-1)/block.x, ny/2); // 2维网格设置
/*
<<<(1024, 16384), (16, 1)>>> Time elapsed 0.021947sec
<<<(512, 16384), (32, 1)>>> Time elapsed 0.011039sec
<<<(64, 16384), (256, 1)>>> Time elapsed 0.009063sec
*/ iStart = cpuSecond();
sumMatrixsOnGPUMix<<<grid, block>>>(d_MatA, d_MatB, d_MatC, nx, ny);
cudaDeviceSynchronize(); // 测试用,同步线程,实际无需等待子线程
iElaps = cpuSecond() - iStart;
printf("sumArraysOnGPU <<<(%d, %d), (%d, %d)>>> Time elapsed %f" \
"sec\n", grid.x, grid.y, block.x, block.y, iElaps); cudaMemcpy(gpuRef, d_MatC, nBytes, cudaMemcpyDeviceToHost);
checkResult(hostRef, gpuRef, nxy); // free device global memory
cudaFree(d_MatA);
cudaFree(d_MatB);
cudaFree(d_MatC); // free host memory
free(h_A);
free(h_B);
free(hostRef);
free(gpuRef); // reset device
cudaDeviceReset(); return 0;
}
运行结果如下:

附common.h文件
# include <cuda_runtime.h>
# include <stdio.h>
# include <sys/time.h>
# define CHECK(call) \
{ \
const cudaError_t error = call; \
if (error != cudaSuccess) \
{ \
fprintf(stderr, "Error: %s:%d, ", __FILE__, __LINE__); \
fprintf(stderr, "code: %d, reason: %s\n", error, \
cudaGetErrorString(error)); \
exit(1); \
} \
} void initialData(float *ip, int size)
{
time_t t;
srand((unsigned int) time(&t)); for (int i=0; i<size; i++)
{
ip[i] = (float)(rand() & 0xFF)/10.0f;
}
} double cpuSecond() {
struct timeval tp;
gettimeofday(&tp, NULL);
return ((double)tp.tv_sec + (double)tp.tv_usec*1.e-6);
} void checkResult(float *hostRef, float *gpuRef, const int N) {
double epsilon = 1.0E-8;
bool match = 1;
for (int i=0; i<N; i++) {
if (abs(hostRef[i] - gpuRef[i]) > epsilon) {
match = 0;
printf("Arrays do not match!\n");
printf("host %5.2f gpu %5.2f at current %d\n",
hostRef[i], gpuRef[i], i);
break;
}
}
if (match) printf("Arrays match.\n\n");
} void sumArraysOnHost(float *A, float *B, float *C, const int N) {
for (int idx=0; idx<N; idx++)
C[idx] = A[idx] + B[idx];
} void sumMatrixsOnHost(float *A, float *B, float *C, const int nx, const int ny){
float *ia = A;
float *ib = B;
float *ic = C;
for (int iy=0; iy<ny; iy++){
for (int ix=0; ix<nx; ix++){
ic[ix] = ia[ix] + ib[ix];
}
ia += nx;
ib += nx;
ic += nx;
}
}
『CUDA C编程权威指南』第二章编程题选做的更多相关文章
- HTTP权威指南:第二章
URL概览 前面提到,URL资源是HTTP协议所使用的寻找资源位置的定位符.分为三个部分,主要的结构是: 方案://服务器/路径 这种结构使得网络上的每一个资源都只有唯一的命名方法,从而使得浏览器可以 ...
- 【HTTP权威指南】第二章-URL与资源
[统一资源定位符URL]通过位置来标示资源,其表达的格式如下:https://item.jd.com/523961.html 第一部分(https)是方案,告知客户端要[怎样访问],这里使用的是htt ...
- 读《Android编程权威指南》
因为去年双十二购买了一折的<Android 编程权威指南(第一版)>,在第二版出来后图灵社区给我推送了第二版的优惠码,激动之余就立马下单购买电子书,不得不说Big Nerd Ranch G ...
- 《Android编程权威指南》
<Android编程权威指南> 基本信息 原书名:Android programming: the big nerd ranch guide 原出版社: Big Nerd Ranch Gu ...
- Android编程权威指南第三版 第32章
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/qq_35564145/article/de ...
- Swift编程权威指南第2版 读后收获
自从参加工作一直在用OC做iOS开发.在2015年的时候苹果刚推出swift1.0不久,当时毕竟是新推出的语言,大家也都很有激情的学习.不过在学完后发现很难在实际项目中使用,再加上当时公司项目都是基于 ...
- 《Android编程权威指南》PhotoGallery应用梳理
PhotoGalley是<Android编程权威指南>书中另外一个重要的应用.
- 《Android编程权威指南》CriminalIntent项目梳理
相信很多新手或者初级开发人员都已经买了第2版的<Android编程权威指南>, 这本书基于Android Studio开发,对入门人员来说是很好的选择,但是很可惜的是, 在完成一个项目后, ...
- 使用最新AndroidStudio编写Android编程权威指南(第3版)中的代码会遇到的一些问题
Android编程权威指南(第3版)这本书是基于Android7.0的,到如今已经过于古老,最新的Android版本已经到10,而这本书的第四版目前还没有正式发售,在最近阅读这本书时,我发现这本书的部 ...
随机推荐
- UML类图中箭头的含义
Explanation of the UML arrows Here's some explanations from the Visual Studio 2015 docs: UML Class D ...
- sql server查看用户权限
System.ServiceModel.FaultException: Server error. Detail: The EXECUTE permission was denied on the o ...
- SQL中的字母的大小写转换
http://blog.csdn.net/dxb601/article/details/52086830 update 表名 set 字段名a= Lower(字段a) 2.将小写字母转化成大写字母 ...
- (转载)Unity里实现更换游戏对象材质球
在unity中本来想实现在一个背景墙上更换图片的功能 在网上查了一些资料说是用Image,但我是新手小白刚接触Unity不久好多组建还不会用,就想能不能通过改变游戏对象的材质球来更换游戏对象的背景. ...
- LightOJ 1258 Making Huge Palindromes(KMP)
题意 给定一个字符串 \(S\) ,一次操作可以在这个字符串的右边增加任意一个字符.求操作之后的最短字符串,满足操作结束后的字符串是回文. \(1 \leq |S| \leq 10^6\) 思路 \( ...
- Twitter开发
开发文档:https://developer.twitter.com/ the Twitter Developer Account Application 示例:https://wptweetboos ...
- 运行python脚本后台执行
最近搞到了一台服务器,挂一个脚本刷刷河畔在线时间.脚本随便写了两下,能跑到什么时候就随缘了 https://blog.csdn.net/philosophyatmath/article/details ...
- selenium 指定滚动到某个元素
from selenium import webdriver from selenium.common.exceptions import NoSuchElementException from se ...
- python中常用的模块二
一.序列化 指:在我们存储数据的时候,需要对我们的对象进行处理,把对象处理成方便存储和传输的数据格式,这个就是序列化, 不同的序列化结果不同,但目的是一样的,都是为了存储和传输. 一,pickle.可 ...
- libxml2的xpath检索中文
ZC: xmlXPathEvalExpression(...) 当 xpath的字符串中 包含中文的时候,返回NULL,暂时不知道该怎么处理了... ZC: 下面是测试的一些代码/文件,留着以后再研究 ...