之前看网上都是清一色pika包的例子,就用的pika包,最大问题是非多线程安全,改为使用rabbitpy。大幅改善了pika多线程需要加锁,和外网推送延迟又不能开多线程导致推送慢的问题。

rabbitpy有个适配器,可以把rabbitpy包的channel适配成与pika包的channel的相同公有方法,减少了难度。

高层次封装,使用参数来控制使用什么包来操作rabbitmq。

# -*- coding: utf-8 -*-
# @Author : ydf
from collections import Callable
import time
from threading import Lock
import rabbitpy
from pika import BasicProperties
# noinspection PyUnresolvedReferences
from rabbitpy.message import Properties
import pika
from pika.adapters.blocking_connection import BlockingChannel
from app.utils_ydf import LogManager
from app.utils_ydf.mixins import LoggerMixin
from app.utils_ydf import decorators
from app.utils_ydf import BoundedThreadPoolExecutor
from app import config as app_config LogManager('pika.heartbeat').get_logger_and_add_handlers(1)
LogManager('rabbitpy').get_logger_and_add_handlers(2)
LogManager('rabbitpy.base').get_logger_and_add_handlers(2) class RabbitmqClientRabbitPy:
"""
使用rabbitpy包。
""" # noinspection PyUnusedLocal
def __init__(self, username, password, host, port, virtual_host, heartbeat=60):
rabbit_url = f'amqp://{username}:{password}@{host}:{port}/{virtual_host}'
self.connection = rabbitpy.Connection(rabbit_url) def creat_a_channel(self) -> rabbitpy.AMQP:
return rabbitpy.AMQP(self.connection.channel()) # 使用适配器,使rabbitpy包的公有方法几乎接近pika包的channel的方法。 class RabbitmqClientPika:
"""
使用pika包,多线程不安全的包。
""" def __init__(self, username, password, host, port, virtual_host, heartbeat=60):
credentials = pika.PlainCredentials(username, password)
self.connection = pika.BlockingConnection(pika.ConnectionParameters(
host, port, virtual_host, credentials, heartbeat=heartbeat)) def creat_a_channel(self) -> BlockingChannel:
return self.connection.channel() class RabbitMqFactory:
def __init__(self, username=app_config.RABBITMQ_USER, password=app_config.RABBITMQ_PASS, host=app_config.RABBITMQ_HOST, port=app_config.RABBITMQ_PORT, virtual_host=app_config.RABBITMQ_VIRTUAL_HOST, heartbeat=60, is_use_rabbitpy=1):
"""
:param username:
:param password:
:param port:
:param virtual_host:
:param heartbeat:
:param is_use_rabbitpy: 为0使用pika,多线程不安全。为1使用rabbitpy,多线程安全的包。
"""
if is_use_rabbitpy:
self.rabbit_client = RabbitmqClientRabbitPy(username, password, host, port, virtual_host, heartbeat)
else:
self.rabbit_client = RabbitmqClientPika(username, password, host, port, virtual_host, heartbeat) def get_rabbit_cleint(self):
return self.rabbit_client class RabbitmqPublisher(LoggerMixin):
def __init__(self, queue_name, is_use_rabbitpy=1, log_level_int=10):
"""
:param queue_name:
:param is_use_rabbitpy: 是否使用rabbitpy包。不推荐使用pika。
:param log_level_int:
"""
self._queue_name = queue_name
self._is_use_rabbitpy = is_use_rabbitpy
self.logger.setLevel(log_level_int)
self.rabbit_client = RabbitMqFactory(is_use_rabbitpy=is_use_rabbitpy).get_rabbit_cleint()
self.channel = self.rabbit_client.creat_a_channel()
self.queue = self.channel.queue_declare(queue=queue_name, durable=True)
self._lock_for_pika = Lock()
self._lock_for_count = Lock()
self._current_time = None
self.count_per_minute = None
self._init_count()
self.logger.info(f'{self.__class__} 被实例化了') def _init_count(self):
with self._lock_for_count:
self._current_time = time.time()
self.count_per_minute = 0 def publish(self, msg: str):
if self._is_use_rabbitpy:
self._publish_rabbitpy(msg)
else:
self._publish_pika(msg)
self.logger.debug(f'向{self._queue_name} 队列,推送消息 {msg}')
with self._lock_for_count:
self.count_per_minute += 1
if time.time() - self._current_time > 60:
self._init_count()
self.logger.info(f'一分钟内推送了 {self.count_per_minute} 条消息到 {self.channel.connection} 中') @decorators.tomorrow_threads(100)
def _publish_rabbitpy(self, msg: str):
# noinspection PyTypeChecker
self.channel.basic_publish(
exchange='',
routing_key=self._queue_name,
body=msg,
properties={'delivery_mode': 2},
) def _publish_pika(self, msg: str):
with self._lock_for_pika: # 亲测pika多线程publish会出错。
self.channel.basic_publish(exchange='',
routing_key=self._queue_name,
body=msg,
properties=BasicProperties(
delivery_mode=2, # make message persistent
)
) def clear(self):
self.channel.queue_purge(self._queue_name) def get_message_count(self):
if self._is_use_rabbitpy:
return self._get_message_count_rabbitpy()
else:
return self._get_message_count_pika() def _get_message_count_pika(self):
queue = self.channel.queue_declare(queue=self._queue_name, durable=True)
return queue.method.message_count def _get_message_count_rabbitpy(self):
ch = self.rabbit_client.connection.channel()
q = rabbitpy.amqp_queue.Queue(ch, self._queue_name)
q.durable = True
msg_count = q.declare(passive=True)[0]
ch.close()
return msg_count class RabbitmqConsumer(LoggerMixin):
def __init__(self, queue_name, consuming_function: Callable = None, threads_num=100, max_retry_times=3, log_level=10, is_print_detail_exception=True, is_use_rabbitpy=1):
"""
:param queue_name:
:param consuming_function: 处理消息的函数,函数有且只能有一个参数,参数表示消息。是为了简单,放弃策略和模板来强制参数。
:param threads_num:
:param max_retry_times:
:param log_level:
:param is_print_detail_exception:
:param is_use_rabbitpy: 是否使用rabbitpy包。不推荐使用pika.
"""
self._queue_name = queue_name
self.consuming_function = consuming_function
self._threads_num = threads_num
self.threadpool = BoundedThreadPoolExecutor(threads_num)
self._max_retry_times = max_retry_times
self.logger.setLevel(log_level)
self.logger.info(f'{self.__class__} 被实例化')
self._is_print_detail_exception = is_print_detail_exception
self._is_use_rabbitpy = is_use_rabbitpy def start_consuming_message(self):
if self._is_use_rabbitpy:
self.start_consuming_message_rabbitpy()
else:
self.start_consuming_message_pika() @decorators.keep_circulating(1) # 是为了保证无论rabbitmq异常中断多久,无需重启程序就能保证恢复后,程序正常。
def start_consuming_message_rabbitpy(self):
# noinspection PyArgumentEqualDefault
channel = RabbitMqFactory(is_use_rabbitpy=1).get_rabbit_cleint().creat_a_channel() # type: rabbitpy.AMQP # 此处先固定使用pika.
channel.queue_declare(queue=self._queue_name, durable=True)
channel.basic_qos(prefetch_count=self._threads_num)
for message in channel.basic_consume(self._queue_name):
body = message.body.decode()
self.logger.debug(f'从rabbitmq取出的消息是: {body}')
self.threadpool.submit(self.__consuming_function_rabbitpy, message) def __consuming_function_rabbitpy(self, message, current_retry_times=0):
if current_retry_times < self._max_retry_times:
# noinspection PyBroadException
try:
self.consuming_function(message.body.decode())
message.ack()
except Exception as e:
self.logger.error(f'函数 {self.consuming_function} 第{current_retry_times+1}次发生错误,\n 原因是{e}', exc_info=self._is_print_detail_exception)
self.__consuming_function_rabbitpy(message, current_retry_times + 1)
else:
self.logger.critical(f'达到最大重试次数 {self._max_retry_times} 后,仍然失败') # 错得超过指定的次数了,就确认消费了。
message.ack() @decorators.keep_circulating(1) # 是为了保证无论rabbitmq异常中断多久,无需重启程序就能保证恢复后,程序正常。
def start_consuming_message_pika(self):
channel = RabbitMqFactory(is_use_rabbitpy=0).get_rabbit_cleint().creat_a_channel() # 此处先固定使用pika.
channel.queue_declare(queue=self._queue_name, durable=True)
channel.basic_qos(prefetch_count=self._threads_num) def callback(ch, method, properties, body):
body = body.decode()
self.logger.debug(f'从rabbitmq取出的消息是: {body}')
self.threadpool.submit(self.__consuming_function_pika, ch, method, properties, body) channel.basic_consume(callback,
queue=self._queue_name,
# no_ack=True
)
channel.start_consuming() @staticmethod
def ack_message_pika(channelx, delivery_tagx):
"""Note that `channel` must be the same pika channel instance via which
the message being ACKed was retrieved (AMQP protocol constraint).
"""
if channelx.is_open:
channelx.basic_ack(delivery_tagx)
else:
# Channel is already closed, so we can't ACK this message;
# log and/or do something that makes sense for your app in this case.
pass def __consuming_function_pika(self, ch, method, properties, body, current_retry_times=0):
if current_retry_times < self._max_retry_times:
# noinspection PyBroadException
try:
self.consuming_function(body)
ch.basic_ack(delivery_tag=method.delivery_tag)
# self.rabbitmq_helper.connection.add_callback_threadsafe(functools.partial(self.ack_message, ch, method.delivery_tag))
except Exception as e:
self.logger.error(f'函数 {self.consuming_function} 第{current_retry_times+1}次发生错误,\n 原因是{e}', exc_info=self._is_print_detail_exception)
self.__consuming_function_pika(ch, method, properties, body, current_retry_times + 1)
else:
self.logger.critical(f'达到最大重试次数 {self._max_retry_times} 后,仍然失败') # 错得超过指定的次数了,就确认消费了。
ch.basic_ack(delivery_tag=method.delivery_tag)
# self.rabbitmq_helper.connection.add_callback_threadsafe(functools.partial(self.ack_message, ch, method.delivery_tag)) if __name__ == '__main__':
with decorators.TimerContextManager():
# noinspection PyArgumentEqualDefault
rabbitmq_publisher = RabbitmqPublisher('queue_test', is_use_rabbitpy=1)
# print(rabbitmq_publisher.get_message_count()) # def pub(msg):
# # print(msg)
# rabbitmq_publisher.publish(msg)
#
#
# [pub(str(i)) for i in range(200000)]
# time.sleep(10)
# def f(body):
# print('.... ', body)
# time.sleep(10) # 模拟做某事需要阻塞10秒种,必须用并发。
#
#
# rabbitmq_consumer = RabbitmqConsumer('queue_test', consuming_function=f, threads_num=200, is_use_rabbitpy=0)
# rabbitmq_consumer.start_consuming_message()

python rabbitmq的库,rabbitpy代替pika的更多相关文章

  1. Python之路-python(rabbitmq、redis)

    一.RabbitMQ队列 安装python rabbitMQ module pip install pika or easy_install pika or 源码 https://pypi.pytho ...

  2. python RabbitMQ队列/redis

    RabbitMQ队列 rabbitMQ是消息队列:想想之前的我们学过队列queue:threading queue(线程queue,多个线程之间进行数据交互).进程queue(父进程与子进程进行交互或 ...

  3. python RabbitMQ队列使用(入门篇)

    ---恢复内容开始--- python RabbitMQ队列使用 关于python的queue介绍 关于python的队列,内置的有两种,一种是线程queue,另一种是进程queue,但是这两种que ...

  4. Python RabbitMQ消息队列

    python内的队列queue 线程 queue:不同线程交互,不能夸进程 进程 queue:只能用于父进程与子进程,或者同一父进程下的多个子进程,进行交互 注:不同的两个独立进程是不能交互的.   ...

  5. python RabbitMQ队列使用

    python RabbitMQ队列使用 关于python的queue介绍 关于python的队列,内置的有两种,一种是线程queue,另一种是进程queue,但是这两种queue都是只能在同一个进程下 ...

  6. python Rabbitmq编程(一)

    python Rabbitmq编程(一) 实现最简单的队列通信 send端 #!/usr/bin/env python import pika credentials = pika.PlainCred ...

  7. Python底层socket库

    Python底层socket库将Unix关于网络通信的系统调用对象化处理,是底层函数的高级封装,socket()函数返回一个套接字,它的方法实现了各种套接字系统调用.read与write与Python ...

  8. 【C++实现python字符串函数库】strip、lstrip、rstrip方法

    [C++实现python字符串函数库]strip.lstrip.rstrip方法 这三个方法用于删除字符串首尾处指定的字符,默认删除空白符(包括'\n', '\r', '\t', ' '). s.st ...

  9. 【C++实现python字符串函数库】二:字符串匹配函数startswith与endswith

    [C++实现python字符串函数库]字符串匹配函数startswith与endswith 这两个函数用于匹配字符串的开头或末尾,判断是否包含另一个字符串,它们返回bool值.startswith() ...

随机推荐

  1. 关于字符串 --java

    这是在杭电上做一道水题时发现的,挺不错,写下了分享一下 http://acm.hdu.edu.cn/showproblem.php?pid=2072 这里我用了两种方法,参考大佬的,一个是list实现 ...

  2. Myeclispe下struts-config.xml文件无法图形界面打开

    1.今天更改web.xml文件不小心误删了下面的配置文件,导致出现如图的错误 <servlet-mapping> <servlet-name>action</servle ...

  3. Vue(十五)组件

    一. 组件component 1. 什么是组件? 组件(Component)是 Vue.js 最强大的功能之一.组件可以扩展 HTML 元素,封装可重用的代码 组件是自定义元素(对象) 2. 定义组件 ...

  4. MongodbHelper

    这个是在查找到的一些资料的基础上自己写的,不足之处请交流指正: using MongoDB.Bson; using MongoDB.Driver; using System; using System ...

  5. css冲刺

    CSS知识点及面试题 1.一般与文本相关的属性都可以继承text-/font-/line- 2.background属性1)background-repeat:repeat/repeat-x/repe ...

  6. LSTM Networks

    Understanding LSTM Networks Recurrent Neural Networks Humans don’t start their thinking from scratch ...

  7. Java利用ShutDownHook关闭系统资源

    Java关闭钩子 在Java程序中能够通过加入关闭钩子,实如今程序退出时关闭资源的功能. 使用Runtime.addShutdownHook(Thread hook)向JVM加入关闭钩子 public ...

  8. centos 安装gitee备忘

    centos 安装gitee备忘:安装前需要升级git.需要安装mysql阿里云主机需要把端口加入例外需要修改全局配置文件把localhost改为ip需要设置为后台运行

  9. PL/SQL学习笔记之事务

    一:事务自动提交的开启与关闭 1)开启事务自动提交:则每一个INSERT,UPDATE或DELETE命令执行时,都提交一次事务. SET AUTOCOMMIT ON; 2)关闭事务自动提交:则执行到C ...

  10. Linux 修改时区

    CentOS 7修改方式如下: # lsb_release -a  --查看系统版本-CentOS Linux release 7.6 # timedatectl     --查看当前系统时区# ls ...