题意:给定DAG,通过每条边需要时间。

从某号点回到1号点不需要时间。

从1号点出发,求最少要多久才能走完所有边。

解:

有源汇有上下界最小费用可行流。

直接连边,费用为时间,下界为1,无上界。

每个点都可能是终点,往t连边。

 #include <cstdio>
#include <algorithm>
#include <queue>
#include <cstring> const int N = , M = , INF = 0x3f3f3f3f; struct Edge {
int nex, v, c, len;
}edge[M << ]; int top = ; int e[N], d[N], vis[N], pre[N], flow[N], ot[N];
std::queue<int> Q; inline void add(int x, int y, int z, int w) {
top++;
edge[top].v = y;
edge[top].c = z;
edge[top].len = w;
edge[top].nex = e[x];
e[x] = top; top++;
edge[top].v = x;
edge[top].c = ;
edge[top].len = -w;
edge[top].nex = e[y];
e[y] = top;
return;
} inline bool SPFA(int s, int t) {
memset(d, 0x3f, sizeof(d));
d[s] = ;
flow[s] = INF;
vis[s] = ;
Q.push(s);
while(!Q.empty()) {
int x = Q.front();
Q.pop();
vis[x] = ;
for(int i = e[x]; i; i = edge[i].nex) {
int y = edge[i].v;
if(edge[i].c && d[y] > d[x] + edge[i].len) {
d[y] = d[x] + edge[i].len;
pre[y] = i;
flow[y] = std::min(flow[x], edge[i].c);
if(!vis[y]) {
vis[y] = ;
Q.push(y);
}
}
}
}
return d[t] < INF;
} inline void update(int s, int t) {
int temp = flow[t];
while(t != s) {
int i = pre[t];
edge[i].c -= temp;
edge[i ^ ].c += temp;
t = edge[i ^ ].v;
}
return;
} inline int solve(int s, int t, int &cost) {
int ans = ;
cost = ;
while(SPFA(s, t)) {
ans += flow[t];
cost += flow[t] * d[t];
update(s, t);
}
return ans;
} int main() {
int n, cost = ;
scanf("%d", &n);
int ss = n + , tt = n + , t = n + ;
for(int i = , x, y, z; i <= n; i++) {
scanf("%d", &x);
for(int j = ; j <= x; j++) {
scanf("%d%d", &y, &z);
// i -> y z
add(i, y, INF, z);
ot[i]++;
ot[y]--;
cost += z;
}
add(i, t, INF, );
}
for(int i = ; i <= n; i++) {
if(ot[i] > ) {
add(i, tt, ot[i], );
}
else {
add(ss, i, -ot[i], );
}
}
add(t, , INF, );
int ans;
solve(ss, tt, ans);
printf("%d", ans + cost);
return ;
}

AC代码

洛谷P4043 支线剧情的更多相关文章

  1. 洛谷P4135 Ynoi2016 掉进兔子洞 (带权bitset?/bitset优化莫队 模板) 题解

    题面. 看到这道题,我第一反应就是莫队. 我甚至也猜出了把所有询问的三个区间压到一起处理然后分别计算对应询问答案. 但是,这么复杂的贡献用什么东西存?难道要开一个数组 query_appear_tim ...

  2. 洛谷1640 bzoj1854游戏 匈牙利就是又短又快

    bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...

  3. 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.

    没有上司的舞会  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond       题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...

  4. 洛谷P1108 低价购买[DP | LIS方案数]

    题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...

  5. 洛谷 P2701 [USACO5.3]巨大的牛棚Big Barn Label:二维数组前缀和 你够了 这次我用DP

    题目背景 (USACO 5.3.4) 题目描述 农夫约翰想要在他的正方形农场上建造一座正方形大牛棚.他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方.我们假定,他的农场划分成 N ...

  6. 洛谷P1710 地铁涨价

    P1710 地铁涨价 51通过 339提交 题目提供者洛谷OnlineJudge 标签O2优化云端评测2 难度提高+/省选- 提交  讨论  题解 最新讨论 求教:为什么只有40分 数组大小一定要开够 ...

  7. 洛谷P1371 NOI元丹

    P1371 NOI元丹 71通过 394提交 题目提供者洛谷OnlineJudge 标签云端评测 难度普及/提高- 提交  讨论  题解 最新讨论 我觉得不需要讨论O long long 不够 没有取 ...

  8. 洛谷P1538迎春舞会之数字舞蹈

    题目背景 HNSDFZ的同学们为了庆祝春节,准备排练一场舞会. 题目描述 在越来越讲究合作的时代,人们注意的更多的不是个人物的舞姿,而是集体的排列. 为了配合每年的倒计时,同学们决定排出——“数字舞蹈 ...

  9. 洛谷八月月赛Round1凄惨记

    个人背景: 上午9:30放学,然后因为学校举办读书工程跟同学去书城选书,中午回来开始打比赛,下午又回老家,中间抽出一点时间调代码,回家已经8:50了 也许是7月月赛时“连蒙带骗”AK的太幸运然而因同学 ...

随机推荐

  1. 如何利用Android Studio打包React Native APK

    ok!百度出来的东西很杂,所以,这里介绍一种最简单,最合适我们(新手,应该是吧)的APK的打包方式! 当然!这种打包是基于Android Studio的,所以,注意喽!!!! 废话不多说开始吧! 首先 ...

  2. HTTP协议基础与web服务的重定向,跳转以及请求转发

    JavaWeb中,HttpServletRequest与HttpServletResponse几乎是处理各种请求与操作必备的参数,与原始的ServletRequest/ServletResponse相 ...

  3. Let the Balloon Rise HDU水题

    题意 让你统计字符串最多的那个串,并输出 分析 直接用map统计,不断更新最大值即可 代码 #include<iostream> #include<algorithm> #in ...

  4. Linux内核读书笔记第五周链接

    1.临界区(critical regions)就是访问和操作共享数据的代码段.多个执行线程并发访问同一个资源通常是不安全的,为了避免在临界区中并发访问,编程者必须保证这些代码 原子地执行.也就是说,代 ...

  5. Jquery获取和修改img的src值的方法

    转自:http://www.jb51.net/article/46861.htm 获取(代码): $("#imgId")[0].src; 修改(代码): $("#imgI ...

  6. Find Amir CodeForces - 805C (贪心+思维)

    A few years ago Sajjad left his school and register to another one due to security reasons. Now he w ...

  7. 正则表达式(java)

    概念: 正则表达式,又称规则表达式.(英语:Regular Expression,在代码中常简写为regex.regexp或RE),计算机科学的一个概念. 正则表通常被用来检索.替换那些符合某个模式( ...

  8. yii框架通过IP地址来使用gii

    这里使用的YII框架的版本是2.0.13 详情请参考官方文档:用Gii生成代码 使用gii的主要步骤 1.生成模型(Model Generator) 2.生成CRUD代码 注意点 1.在生成CURD代 ...

  9. 转帖: Serverless架构模式简介

    Serverless架构模式简介   原贴地址:https://blog.csdn.net/chdhust/article/details/71250099?utm_medium=referral&a ...

  10. MongoDb在windows10下的安装、创建用户和数据库

    1.mongodb下载地址https://www.mongodb.com/download-center#community 2.安装    3.在D:\MongoDB目录下创建db和log两个文件夹 ...