一道比较基础的计数题,还是一个常用的单独计算贡献的例子。

首先看题目和范围,暴力枚举肯定是不可行的,而且\(O(n\ logn)\)的算法貌似很难写。

那我们就来想\(O(n)\)的吧,我们单独考虑每一条边的贡献,我们注意到一个重要的性质:

树上任意两点间的最短路径都是唯一确定的。

这个常识吧,所以我们只需要考虑每一条边两边的点在计算时会经过这条边多少次。

我们枚举每一条边,然后可以这样考虑这一条边:

我们设一边有\(x\)个点,另一边有\(y\)个点,很明显\(x+y=n\)

然后我们考虑有多少点之间的路径会经过这条边

用上面的那个性质可以发现,只要在这条边的两边都有点时就满足条件。

然后我们容斥一下就知道答案为:\(C_n^k-C_x^k-C_y^k\)

再注意一下在本题中我们规定当\(a>b\)时\(C_b^a=0\)

关于那个每一条边两边的点数,我们DFS预处理一遍后得到一边的点数,然后根据上面讲的减一下得出另一边的点数即可。

CODE

#include<cstdio>
#include<cstring>
#include<cctype>
const int N=100005,mod=1e9+7;
struct edge
{
int to,next;
}e[N<<1];
int head[N],fac[N],n,x,y,ans,k,cnt,rt=1,tot,size[N],inv[N];
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch; while (!isdigit(ch=tc()));
while (x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc()));
}
inline void double_add(int x,int y)
{
e[++cnt].to=y; e[cnt].next=head[x]; head[x]=cnt;
e[++cnt].to=x; e[cnt].next=head[y]; head[y]=cnt;
}
inline int quick_pow(int x,int p)
{
int tot=1;
while (p)
{
if (p&1) tot=1LL*tot*x%mod;
x=1LL*x*x%mod; p>>=1;
}
return tot;
}
inline int C(int n,int k)
{
if (n<k) return 0; if (n==k) return 1;
return 1LL*fac[n]*inv[k]%mod*inv[n-k]%mod;
}
inline void DFS(int now,int fa)
{
register int i; size[now]=1;
for (i=head[now];~i;i=e[i].next)
if (e[i].to!=fa) DFS(e[i].to,now),size[now]+=size[e[i].to];
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i; read(n); read(k);
memset(head,-1,sizeof(head));
for (fac[1]=inv[1]=1,i=2;i<=n;++i)
fac[i]=1LL*fac[i-1]*i%mod,inv[i]=quick_pow(fac[i],mod-2);
for (i=1;i<n;++i)
read(x),read(y),double_add(x,y);
DFS(rt,-1); tot=C(n,k);
for (i=1;i<=n;++i)
ans=((1LL*ans+tot-C(size[i],k)+mod)%mod-C(n-size[i],k)+mod)%mod;
return printf("%d",ans),0;
}

51Nod 1677 treecnt的更多相关文章

  1. 51nod 1677 treecnt(思维)

    题意: 给定一棵n个节点的树,从1到n标号.选择k个点,你需要选择一些边使得这k个点通过选择的边联通,目标是使得选择的边数最少. 现需要计算对于所有选择k个点的情况最小选择边数的总和为多少. 考虑每条 ...

  2. 1677 treecnt(贡献)

    1677 treecnt 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 给定一棵n个节点的树,从1到n标号.选择k个点,你需要选择一些边使得这k个点通过选择的边联 ...

  3. 51nod 1677

    考虑树上的每条边对答案的贡献--- x ----y ---若 x 左边有 a2 个点,y 的右边有 a3 个点那么改边对答案的贡献为 C(n, k) - C(a2, k) - C(a3, k)快速幂求 ...

  4. 胡小兔的OI日志3 完结版

    胡小兔的 OI 日志 3 (2017.9.1 ~ 2017.10.11) 标签: 日记 查看最新 2017-09-02 51nod 1378 夹克老爷的愤怒 | 树形DP 夹克老爷逢三抽一之后,由于采 ...

  5. Luogu P3177 [HAOI2015]树上染色

    一道有机结合了计数和贪心这一DP两大考点的神仙题,不得不说做法是很玄妙. 首先我们很容易想到DP,设\(f_{i,j}\)表示在以\(i\)为根节点的子树中选\(j\)个黑色节点的最大收益值. 然后我 ...

  6. 【51Nod 1244】莫比乌斯函数之和

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 模板题... 杜教筛和基于质因子分解的筛法都写了一下模板. 杜教筛 ...

  7. 51Nod 1268 和为K的组合

    51Nod  1268  和为K的组合 1268 和为K的组合 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 给出N个正整数组成的数组A,求能否从中选出若干个,使 ...

  8. 51Nod 1428 活动安排问题

    51Nod   1428  活动安排问题 Link: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1428 1428 活 ...

  9. 51Nod 1278 相离的圆

    51Nod 1278 相离的圆 Link: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1278 1278 相离的圆 基 ...

随机推荐

  1. Flutter 相机定制

    Flutter中与硬件相关的部分,一直都挺蛋疼的.方案基本上有两种,自己写,或者等出相关的库. 最近做的一个项目中,需要对相机做定制.有过相关模块开发经验的,就知道这种需求并不简单,况且是这种跨平台解 ...

  2. kNN处理iris数据集-使用交叉验证方法确定最优 k 值

    基本流程: 1.计算测试实例到所有训练集实例的距离: 2.对所有的距离进行排序,找到k个最近的邻居: 3.对k个近邻对应的结果进行合并,再排序,返回出现次数最多的那个结果. 交叉验证: 对每一个k,使 ...

  3. 查看neighbors大小对K近邻分类算法预测准确度和泛化能力的影响

    代码: # -*- coding: utf-8 -*- """ Created on Thu Jul 12 09:36:49 2018 @author: zhen &qu ...

  4. 如何在windows下使用pip安装

    首先电脑已经安装好了python 找到python的安装目录,接着找到pip.exe,一般而言它会在Scripts文件夹下,我这里选择的是pip2.7.exe 接下来,win+r,输入cmd,回车打开 ...

  5. Java中BufferedReader到底是一个什么类?

    1.java.io.BufferedReader 和 java.io.BufferedWriter 类各拥有8192字符的缓冲区.当BufferedReader在读取文本文件时,会先尽量从文件中读入字 ...

  6. 描述整体程序的 app

    一个小程序主体部分由三个文件组成,必须放在项目的根目录,如下 app.js文件 App() 函数用来注册一个小程序.接受一个 object 参数,其指定小程序的生命周期函数等.object参数说明如下 ...

  7. Java对XML文件解析方式之一_SAX

    SAX(org.xml.sax) Simple API for XML,以事件的形式通知程序,对Xml进行解析.   SAX技术的介绍:SAX是一种以事件驱动的XML api,由它定义的事件流可以指定 ...

  8. Python向上取整,向下取整以及四舍五入函数

    import math f = 11.2 print math.ceil(f) #向上取整 print math.floor(f) #向下取整 print round(f) #四舍五入 #这三个函数的 ...

  9. Redis后台监控与管理CacheCloud

    CacheCloud环境需求 Java 7 Maven 3 MySQL Redis 3 具体用法可参考:https://cachecloud.github.io 1.下载CacheCloud 官网ht ...

  10. lij IDEA项目包分层结构显示设置

    使用Intellij IDEA创建项目发现包没有分层,使用不方便. 可以点击右上角的设置,把红框选项的√去掉即可. 就会分层显示了,这就很舒服了.