一道比较基础的计数题,还是一个常用的单独计算贡献的例子。

首先看题目和范围,暴力枚举肯定是不可行的,而且\(O(n\ logn)\)的算法貌似很难写。

那我们就来想\(O(n)\)的吧,我们单独考虑每一条边的贡献,我们注意到一个重要的性质:

树上任意两点间的最短路径都是唯一确定的。

这个常识吧,所以我们只需要考虑每一条边两边的点在计算时会经过这条边多少次。

我们枚举每一条边,然后可以这样考虑这一条边:

我们设一边有\(x\)个点,另一边有\(y\)个点,很明显\(x+y=n\)

然后我们考虑有多少点之间的路径会经过这条边

用上面的那个性质可以发现,只要在这条边的两边都有点时就满足条件。

然后我们容斥一下就知道答案为:\(C_n^k-C_x^k-C_y^k\)

再注意一下在本题中我们规定当\(a>b\)时\(C_b^a=0\)

关于那个每一条边两边的点数,我们DFS预处理一遍后得到一边的点数,然后根据上面讲的减一下得出另一边的点数即可。

CODE

#include<cstdio>
#include<cstring>
#include<cctype>
const int N=100005,mod=1e9+7;
struct edge
{
int to,next;
}e[N<<1];
int head[N],fac[N],n,x,y,ans,k,cnt,rt=1,tot,size[N],inv[N];
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch; while (!isdigit(ch=tc()));
while (x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc()));
}
inline void double_add(int x,int y)
{
e[++cnt].to=y; e[cnt].next=head[x]; head[x]=cnt;
e[++cnt].to=x; e[cnt].next=head[y]; head[y]=cnt;
}
inline int quick_pow(int x,int p)
{
int tot=1;
while (p)
{
if (p&1) tot=1LL*tot*x%mod;
x=1LL*x*x%mod; p>>=1;
}
return tot;
}
inline int C(int n,int k)
{
if (n<k) return 0; if (n==k) return 1;
return 1LL*fac[n]*inv[k]%mod*inv[n-k]%mod;
}
inline void DFS(int now,int fa)
{
register int i; size[now]=1;
for (i=head[now];~i;i=e[i].next)
if (e[i].to!=fa) DFS(e[i].to,now),size[now]+=size[e[i].to];
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i; read(n); read(k);
memset(head,-1,sizeof(head));
for (fac[1]=inv[1]=1,i=2;i<=n;++i)
fac[i]=1LL*fac[i-1]*i%mod,inv[i]=quick_pow(fac[i],mod-2);
for (i=1;i<n;++i)
read(x),read(y),double_add(x,y);
DFS(rt,-1); tot=C(n,k);
for (i=1;i<=n;++i)
ans=((1LL*ans+tot-C(size[i],k)+mod)%mod-C(n-size[i],k)+mod)%mod;
return printf("%d",ans),0;
}

51Nod 1677 treecnt的更多相关文章

  1. 51nod 1677 treecnt(思维)

    题意: 给定一棵n个节点的树,从1到n标号.选择k个点,你需要选择一些边使得这k个点通过选择的边联通,目标是使得选择的边数最少. 现需要计算对于所有选择k个点的情况最小选择边数的总和为多少. 考虑每条 ...

  2. 1677 treecnt(贡献)

    1677 treecnt 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 给定一棵n个节点的树,从1到n标号.选择k个点,你需要选择一些边使得这k个点通过选择的边联 ...

  3. 51nod 1677

    考虑树上的每条边对答案的贡献--- x ----y ---若 x 左边有 a2 个点,y 的右边有 a3 个点那么改边对答案的贡献为 C(n, k) - C(a2, k) - C(a3, k)快速幂求 ...

  4. 胡小兔的OI日志3 完结版

    胡小兔的 OI 日志 3 (2017.9.1 ~ 2017.10.11) 标签: 日记 查看最新 2017-09-02 51nod 1378 夹克老爷的愤怒 | 树形DP 夹克老爷逢三抽一之后,由于采 ...

  5. Luogu P3177 [HAOI2015]树上染色

    一道有机结合了计数和贪心这一DP两大考点的神仙题,不得不说做法是很玄妙. 首先我们很容易想到DP,设\(f_{i,j}\)表示在以\(i\)为根节点的子树中选\(j\)个黑色节点的最大收益值. 然后我 ...

  6. 【51Nod 1244】莫比乌斯函数之和

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 模板题... 杜教筛和基于质因子分解的筛法都写了一下模板. 杜教筛 ...

  7. 51Nod 1268 和为K的组合

    51Nod  1268  和为K的组合 1268 和为K的组合 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 给出N个正整数组成的数组A,求能否从中选出若干个,使 ...

  8. 51Nod 1428 活动安排问题

    51Nod   1428  活动安排问题 Link: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1428 1428 活 ...

  9. 51Nod 1278 相离的圆

    51Nod 1278 相离的圆 Link: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1278 1278 相离的圆 基 ...

随机推荐

  1. 腾讯X5WebView集成及在移动端中使用

    工作中经常涉及H5网页的加载工作,最多使用的就是安卓系统控件WebView,但是当网页内容比较多的时候,需要等待很久才能加载完,加载完后用户才能看到网页中的内容,这样用户需要等很久,体验很差. 那能不 ...

  2. python 定时修改数据库

    当需要定时修改数据库时,一般我们都选择起一个定时进程去改库.如果将这种定时任务写入业务中,写成一个接口呢,定时进程显得有些不太合适?如果需要定时修改100次数据库,常规做法会启动100个进程,虽然这种 ...

  3. Python实现批量梯度下降算法

    # -*- coding: UTF-8 -*- import numpy as npimport math # 定义基础变量learning_rate = 0.1n_iterations = 1000 ...

  4. Java —— 对象

    创建对象 int[] b = new int[30]; 等号右侧:创建了一个数组对象  // 等号左侧:变量 b 称为该对应的引用  // 称作 变量 b 指向了一个对象  // 有时也简称为: b ...

  5. Access删除某一字段重复的数据但是要保留一条

    如下图所示,Checktime这个字段有很多重复数据,我需要把所有Checktime这个字段重复的都删掉,但是还需要保留一条: 在Access做删除查询怎么做呀,来个Access高手,复制粘贴党请手下 ...

  6. Source Insight 查找的选择项

    查找参数:whole words only :                  全字匹配查找case sensitive  :                   区分大小写project wide ...

  7. Python和Lua的默认作用域以及闭包

    默认作用域 前段时间学了下Lua,发现Lua的默认作用域和Python是相反的.Lua定义变量时默认变量的作用域是全局(global,这样说不是很准确,Lua在执行x = 1这样的语句时会从当前环境开 ...

  8. 使用 PsPing & PaPing 进行 TCP 端口连通性测试

    PsPing & PaPing 介绍 通常,我们测试数据包能否通过 IP 协议到达特定主机时,都习惯使用 ping 命令.工作时 ping 向目标主机发送一个 IMCP Echo 请求的数据包 ...

  9. Linux查看服务器配置常用

    1. 内存: free:查看内存   total:总共内存 2. 处理器数量: cat /proc/cpuinfo | grep "processor" | wc -l 3.处理器 ...

  10. sql server 2008R2无人值守批处理脚本自动化安装

    ▲版权声明:本文为博主原创文章,未经博主允许不得转载. Microsoft SQL Server 2008 R2是一款软件,提供完整的企业级技术与工具,帮助您以最低的总拥有成本获得最有价值的信息.您可 ...