传送门


首先,每一次有一个猎人死亡之后\(\sum w\)会变化,计算起来很麻烦,所以考虑在某一个猎人死亡之后给其打上标记,仍然计算他的\(w\),只是如果打中了一个打上了标记的人就重新选择。这样对应于每一个人的概率仍然是一样的,而\(\sum w\)在计算的过程中不会变。

因为要求最后死的概率,似乎不是很好求,考虑容斥。枚举一个集合\(S\),我们强制集合\(S\)中的猎人在\(1\)号猎人死亡之后死亡。设集合\(S\)中所有猎人的\(w\)之和为\(A\),所有猎人的\(w\)之和为\(sum\),那么集合\(S\)能够产生的贡献为\((-1) ^ {|S|} \times \frac{w_1}{sum} \times \sum\limits_{i=0} ^ {\infty} (1 - \frac{A + w_1}{sum})^i\)。

注意到后面是一个无穷递减等比数列,那么\(\sum\limits_{i=0} ^ {\infty} (1 - \frac{A + w_1}{sum})^i = \frac{1}{1 - (1 - \frac{A + w_1}{sum})} = \frac{sum}{A + w_1}\),那么原式等于\((-1)^{|S|} \times \frac{w_1}{A + w_1}\)。

那么我们只需要计算每一个集合的\(A\)就可以了。

注意到对于\(A\)的计算,实质是一个\(01\)背包。但是直接\(DP\)肯定复杂度爆炸,考虑生成函数求解

第\(i\)个猎人的生成函数为\(-x^{w_i} + 1\),\(-x^{w_i}\)表示选择第\(i\)个猎人,但是集合的贡献乘上\(-1\),\(+1\)表示不选择第\(i\)个猎人。然后分治\(FFT\)求解,我们就可以得到对于所有的\(A\)的\(\frac{w_1}{A + w_1}\)前面的系数了。

总的复杂度为\(O(n\ log^2n)\)

#include<bits/stdc++.h>
#define ll long long
#define mid ((l + r) >> 1)
//This code is written by Itst
using namespace std; inline int read(){
int a = 0;
char c = getchar();
bool f = 0;
while(!isdigit(c)){
if(c == '-')
f = 1;
c = getchar();
}
while(isdigit(c)){
a = (a << 3) + (a << 1) + (c ^ '0');
c = getchar();
}
return f ? -a : a;
} const int MOD = 998244353 , G = 3 , INV = 332748118 , MAXN = 2e5 + 10;
int val[MAXN] , dir[MAXN] , N , need , inv_need;
vector < int > v[MAXN]; inline int poww(ll a , int b){
int times = 1;
while(b){
if(b & 1)
times = times * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return times;
} inline void NTT(vector < int > &arr , int type){
while(arr.size() < need)
arr.push_back(0);
for(int i = 1 ; i < need ; ++i)
if(i < dir[i])
swap(arr[i] , arr[dir[i]]);
for(int i = 1 ; i < need ; i <<= 1){
int wn = poww(type == 1 ? G : INV , (MOD - 1) / (i << 1));
for(int j = 0 ; j < need ; j += i << 1){
ll w = 1;
for(int k = 0 ; k < i ; ++k , w = w * wn % MOD){
int x = arr[j + k] , y = arr[i + j + k] * w % MOD;
arr[j + k] = x + y >= MOD ? x + y - MOD : x + y;
arr[i + j + k] = x - y < 0 ? x - y + MOD : x - y;
}
}
}
} inline void solve(int l , int r){
need = 1;
while(need <= v[l].size() + v[r].size())
need <<= 1;
inv_need = poww(need , MOD - 2);
for(int i = 1 ; i < need ; ++i)
dir[i] = (dir[i >> 1] >> 1) | (i & 1 ? need >> 1 : 0);
NTT(v[l] , 1);
NTT(v[r] , 1);
for(int i = 0 ; i < need ; ++i)
v[l][i] = 1ll * v[l][i] * v[r][i] % MOD;
NTT(v[l] , -1);
for(int i = 0 ; i < need ; ++i)
v[l][i] = 1ll * v[l][i] * inv_need % MOD;
while(v[l][v[l].size() - 1] == 0)
v[l].erase(--v[l].end());
} int main(){
#ifndef ONLINE_JUDGE
freopen("in" , "r" , stdin);
//freopen("out" , "w" , stdout);
#endif
N = read();
if(N == 1){
puts("1");
return 0;
}
for(int i = 1 ; i <= N ; ++i){
val[i] = read();
if(i != 1){
v[i].push_back(1);
while(v[i].size() < val[i])
v[i].push_back(0);
v[i].push_back(MOD - 1);
}
}
int ans = 0;
for(int i = 1 ; i < N ; i <<= 1)
for(int j = 2 ; j + i <= N ; j += i << 1){
solve(j , j + i);
vector < int >().swap(v[j + i]);
}
for(int i = 0 ; i < v[2].size() ; ++i)
ans = (ans + 1ll * poww(i + val[1] , MOD - 2) * v[2][i]) % MOD;
cout << 1ll * ans * val[1] % MOD;
return 0;
}

LOJ2541 PKUWC2018 猎人杀 期望、容斥、生成函数、分治的更多相关文章

  1. 【洛谷5644】[PKUWC2018] 猎人杀(容斥+生成函数+分治NTT)

    点此看题面 大致题意: 有\(n\)个人相互开枪,每个人有一个仇恨度\(a_i\),每个人死后会开枪再打死另一个还活着的人,且第一枪由你打响.设当前剩余人仇恨度总和为\(k\),则每个人被打中的概率为 ...

  2. 【LOJ2541】【PKUWC2018】猎人杀(容斥,FFT)

    [LOJ2541][PKUWC2018]猎人杀(容斥,FFT) 题面 LOJ 题解 这题好神仙啊. 直接考虑概率很麻烦,因为分母总是在变化. 但是,如果一个人死亡之后,我们不让他离场,假装给他打一个标 ...

  3. LOJ2541 PKUWC2018猎人杀(概率期望+容斥原理+生成函数+分治NTT)

    考虑容斥,枚举一个子集S在1号猎人之后死.显然这个概率是w1/(Σwi+w1) (i∈S).于是我们统计出各种子集和的系数即可,造出一堆形如(-xwi+1)的生成函数,分治NTT卷起来就可以了. #i ...

  4. loj2541 「PKUWC2018」猎人杀 【容斥 + 分治NTT】

    题目链接 loj2541 题解 思路很妙啊, 人傻想不到啊 觉得十分难求,考虑容斥 由于\(1\)号可能不是最后一个被杀的,我们容斥一下\(1\)号之后至少有几个没被杀 我们令\(A = \sum\l ...

  5. [LOJ2541] [PKUWC2018] 猎人杀

    题目链接 LOJ:https://loj.ac/problem/2541 Solution 很巧妙的思路. 注意到运行的过程中概率的分母在不停的变化,这样会让我们很不好算,我们考虑这样转化:假设所有人 ...

  6. [LOJ2541][PKUWC2018]猎人杀(容斥+分治+FFT)

    https://blog.csdn.net/Maxwei_wzj/article/details/80714129 n个二项式相乘可以用分治+FFT的方法,使用空间回收可以只开log个数组. #inc ...

  7. [PKUWC2018]猎人杀

    题解 感觉是一道神题,想不出来 问最后\(1\)号猎人存活的概率 发现根本没法记录状态 每次转移的分母也都不一样 可以考虑这样一件事情: 如果一个人被打中了 那么不急于从所有人中将ta删除,而是给ta ...

  8. 题解-PKUWC2018 猎人杀

    Problem loj2541 题意概要:给定 \(n\) 个人的倒霉度 \(\{w_i\}\),每回合会有一个人死亡,每个人这回合死亡的概率为 自己的倒霉度/目前所有存活玩家的倒霉度之和,求第 \( ...

  9. 洛谷 P5644 - [PKUWC2018]猎人杀(分治+NTT)

    题面传送门 很久之前(2020 年)就听说过这题了,这么经典的题怎么能只听说而亲自做一遍呢 首先注意到每次开枪打死一个猎人之后,打死其他猎人概率的分母就会发生变化,这将使我们维护起来非常棘手,因此我们 ...

随机推荐

  1. spark (java API) 在Intellij IDEA中开发并运行

    概述:Spark 程序开发,调试和运行,intellij idea开发Spark java程序. 分两部分,第一部分基于intellij idea开发Spark实例程序并在intellij IDEA中 ...

  2. 《Inside C#》笔记(七) Attribute

    Attribute特性可以说是具有开创新的意义,因为一般的语言在被设计出来后,它所具有的能力就已经固定了.而借助Attribute特性,我们可以为C#已有的类型附加信息,既可以在编程时(design- ...

  3. mysql的高级特性-存储过程

    定义: 存储例程是存储在数据库服务器中的一组sql语句,通过在查询中调用一个指定的名称来执行这些sql语句命令. 语法: DELIMITER // 声明语句结束符,用于区分; CEATE PROCED ...

  4. 【第三篇】SAP ABAP7.5x新语法之程序结构&SubScreen

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文地址:SAP ABAP7.5x系列之程序结构& ...

  5. 安装SQL 2005 出现警告 ,32位ASP.NET已经注册,需要注册64位

    将64位.net注册到iis上 cscript C:\inetpub\adminscripts\adsutil.vbs SET W3SVC/AppPools/Enable32bitAppOnWin64 ...

  6. sql server递归

    with cte as ( select belongsAgent from [QPProxyDB].[dbo].[BS_ProxyInfo] where ProxyID = @ProxyID uni ...

  7. android ninja【转】

    Android7.0 Ninja编译原理 引言 使在Android N的系统上,初次使用了Ninja的编译系统.对于Ninja,最初的印象是用在了Chromium open source code的编 ...

  8. linux kernel 源码安装

    有时我们在安装系统后,发现没有安装当前系统的内核源码在/usr/src/kernels目录下,其实我们是少安装了一个rpm包: 当你配置好yum源后: yum install kernel-devel ...

  9. python基础、字符串和if条件语句,while循环,跳出循环、结束循环

    一:Python基础 1.文件后缀名: .py 2.Python2中读中文要在文件头写: -*-coding:utf8-*- 3.input用法      n为变量,代指某一变化的值 n = inpu ...

  10. zTree异步加载展开第一级节点

    在 setting 中的 callback 中加上 onAsyncSuccess:onAsyncSuccess 回调函数 , 然后实现回调函数 var isFirst = true;function ...