Caffe源码(caffe version:09868ac , date: 2015.08.15)中有一些重要文件,这里介绍下math_functions文件。

1.      include文件:

(1)、<glog/logging.h>:GLog库,它是google的一个开源的日志库,其使用可以参考:http://blog.csdn.net/fengbingchun/article/details/48768039

(2)、<caffe/common.hpp>、<caffe/util/device_alternate.hpp>:这两个文件的介绍可以参考: http://blog.csdn.net/fengbingchun/article/details/54955236 ;

2.      <caffe/util/mkl_alternate.hpp>文件:

这个文件里包含两种库,一个是Intel MKL,一个是OpenBLAS,这里用的是OpenBLAS。如果商用Intel MKL是需要付费的,下面仅对Intel MKL进行简单介绍。

Intel MKL(Math Kernel Library)即Intel数学核心函数库,它是一套高度优化和广泛线程安全的数学例程,专为需要极致性能的科学、工程及金融等领域的应用而设计。核心数学函数包括BLAS、LAPACK、ScaLAPACK、Sparse Solver、快速傅里叶变换、矢量数学及其它函数。它可以为当前及下一代英特尔处理器提供性能优化,包括更出色地与Microsoft Visual Studio、Eclipse和XCode相集成。英特尔MKL支持完全集成英特尔兼容性OpenMP运行时库,以实现更出色的Windows/Linux跨平台兼容性。

关于OpenBLAS的介绍可以参考: http://blog.csdn.net/fengbingchun/article/details/55509764

在github/fengbingchun/Caffe_Test中<mkl_alternate.hpp>中走的是OpenBLAS分支。

(1)、定义了一些宏:

DEFINE_VSL_UNARY_FUNC:一元函数,包括Sqr、Exp、Ln、Abs,对应的函数为vsSqr、vsExp、vsLn、vsAbs、vdSqr、vdExp、vdLn、vdAbs,支持float和double类型。

DEFINE_VSL_UNARY_FUNC_WITH_PARAM:带一个参数的一元函数,包括Powx,对应的函数为vsPowx、vdPowx,支持float和double类型。

DEFINE_VSL_BINARY_FUNC:二元函数,包括Add、Sub、Mul、Div,对应的函数为vsAdd、vsSub、vsMul、vsDiv、vdAdd、vdSub、vdMul、vdDiv,支持float和double类型。

(2)、定义了axpby函数,支持两种类型,cblas_saxpby、cblas_daxpby,如果设置incX和incY为1(即步长为1),则:Y=alpha*X+beta*Y

mkl_alternate文件测试代码如下:

int test_caffe_util_mkl_alternate()
{
	const int N{ 5 };
	float a[N] {1, 2, 3, 4, 5}, b{ 2 }, alpha{ 0.2f }, beta{0.4f};
	float y1[N], y2[N], y3[N], y4[N]{6, 7, 8, 9, 10};

	fprintf(stderr, "test unary function: vsSqr\n");
	vsSqr(N, a, y1);
	for (auto ret : y1) {
		fprintf(stderr, "%f    ", ret);
	}
	fprintf(stderr, "\n");

	fprintf(stderr, "test function unary function with singular parameter: vsPowx\n");
	vsPowx(N, a, b, y2);
	for (auto ret : y2) {
		fprintf(stderr, "%f    ", ret);
	}
	fprintf(stderr, "\n");

	fprintf(stderr, "test binary function: vsAdd\n");
	vsAdd(N, a, a, y3);
	for (auto ret : y3) {
		fprintf(stderr, "%f    ", ret);
	}
	fprintf(stderr, "\n");

	fprintf(stderr, "test axpby function(Y=alpha*X+beta*Y): cblas_saxpby\n");
	cblas_saxpby(N, alpha, a, 1, beta, y4, 1);
	for (auto ret : y4) {
		fprintf(stderr, "%f    ", ret);
	}
	fprintf(stderr, "\n");

	return 0;
}

执行结果如下:

3.      math_functions文件内函数:封装了一些基础的数学运算函数

(1)、caffe_cpu_gemm:C=alpha*A*B+beta*C;

(2)、caffe_cpu_gemv:y=alpha*A*x+beta*y;

(3)、caffe_axpy:Y=alpha*X+Y;

(4)、caffe_cpu_axpby:Y=alpha*X+beta*Y;

(5)、caffe_copy:从X中拷贝前N个元素到Y中;

(6)、caffe_set:将X中的前N个元素置为alpha;

(7)、caffe_add_scalar:给Y中的前N个元素分别加上常数alpha;

(8)、caffe_scal:X = alpha*X;

(9)、caffe_sqr/ caffe_exp/caffe_log/caffe_abs:会调用mkl_alternate.hpp中的vsSqr、vsExp、vsLn、vsAbs、vdSqr、vdExp、vdLn、vdAbs函数;

(10)、caffe_add/caffe_sub/caffe_mul/caffe_div:会调用mkl_alternate.hpp中的vsAdd、vsSub、vsMul、vsDiv、vdAdd、vdSub、vdMul、vdDiv函数;

(11)、caffe_powx:会调用mkl_alternate.hpp中的vsPowx和vdPowx函数;

(12)、caffe_rng_rand:返回一个unsignedint类型的随机数;

(13)、caffe_nextafter:在最大方向上,返回b可以表示的最接近的数值;

(14)、caffe_rng_uniform:产生指定范围内的均匀分布随机数;

(15)、caffe_rng_gaussian:产生高斯分布随机数;

(16)、caffe_rng_bernoulli:产生伯努利分布随机数;

(17)、caffe_cpu_dot:计算步长为1的内积;

(18)、caffe_cpu_strided_dot:计算指定步长的内积;

(19)、caffe_cpu_hamming_distance:计算x、y之间的海明距离;

(20)、caffe_cpu_asum:计算向量x中前n个元素的绝对值之和;

(21)、caffe_sign:类似于正负号函数,仅返回-1或1;

(22)、caffe_cpu_scale:Y=alpha*X 。

4.        宏DEFINE_CAFFE_CPU_UNARY_FUNC:一元函数,类似于mkl_alternate.hpp中的宏DEFINE_VSL_UNARY_FUNC,包括:

(1)、caffe_cpu_sign:正负号函数,输出-1、0、1;

(2)、caffe_cpu_sgnbit:作用类似于std::signbit,static_cast<bool>((std::signbit)(x));x为负数输出为1,其它输出为0;

(3)、caffe_cpu_fabs:取绝对值,作用类似于std::fabs。

math_functions文件测试代码如下:

int test_caffe_util_math_functions()
{
	float alpha{ 0.5f }, beta{ 0.1f };
	// h*w: A: 2*3; B: 3*4; C: 2*4
	float A[2 * 3] {1, 2, 3, 4, 5, 6}, B[3 * 4] {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},
		y1[2 * 4]{1, 2, 3, 4, 5, 6, 7, 8}, x[3]{1, 2, 3}, y2[2]{1, 2},
		y3[6] {1, 2, 3, 4, 5, 6}, y4[6] {1, 2, 3, 4, 5, 6},
		y7[6]{1, 2, 3, 4, 5, 6}, y10[6] {1, 2, 3, 4, 5, 6},
		y11[6] {1, 2, 3, 4, 5, 6}, C[6] {-2, -1, 0, 1, 2, 3}, y19[6] {-10, -10, -10, -10, -10, -10};
	float  y5[6], y6[6], y20[6], y21[6], y22[6];
	int y12[6] {1, 2, 3, 4, 5, 6};

	fprintf(stderr, "test math function: caffe_cpu_gemm(C=alpha*A*B+beta*C)\n");
	// A、B、y1: matrix
	caffe::caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, 2, 4, 3, alpha, A, B, beta, y1);
	for (auto ret : y1) {
		fprintf(stderr, "%f    ", ret);
	}
	fprintf(stderr, "\n");

	fprintf(stderr, "test math function: caffe_cpu_gemv(y=alpha*A*x+beta*y)\n");
	// A: matrix; x、y2: vector
	caffe::caffe_cpu_gemv(CblasNoTrans, 2, 3, alpha, A, x, beta, y2);
	for (auto ret : y2) {
		fprintf(stderr, "%f    ", ret);
	}
	fprintf(stderr, "\n");

	fprintf(stderr, "test math function: caffe_axpy(Y=alpha*X+Y)\n");
	caffe::caffe_axpy(6, alpha, A, y3);
	for (auto ret : y3) {
		fprintf(stderr, "%f    ", ret);
	}
	fprintf(stderr, "\n");

	fprintf(stderr, "test math function: caffe_cpu_axpby(Y= alpha*X+beta*Y)\n");
	caffe::caffe_cpu_axpby(6, alpha, A, beta, y4);
	for (auto ret : y4) {
		fprintf(stderr, "%f    ", ret);
	}
	fprintf(stderr, "\n");

	fprintf(stderr, "test math function: caffe_copy\n");
	caffe::caffe_copy(3, A, y5);
	for (auto ret : y5) {
		fprintf(stderr, "%f    ", ret);
	}
	fprintf(stderr, "\n");

	fprintf(stderr, "test math function: caffe_set\n");
	caffe::caffe_set(3, alpha, y6);
	for (auto ret : y6) {
		fprintf(stderr, "%f    ", ret);
	}
	fprintf(stderr, "\n");

	fprintf(stderr, "test math function: caffe_scal(X=alpha*X)\n");
	caffe::caffe_scal(4, alpha, y7);
	for (auto ret : y7) {
		fprintf(stderr, "%f    ", ret);
	}
	fprintf(stderr, "\n");

	fprintf(stderr, "test math function: caffe_rng_rand\n");
	unsigned int y8 = caffe::caffe_rng_rand();
	fprintf(stderr, "caffe rng rand: %d\n", y8);

	fprintf(stderr, "test math function: caffe_nextafter\n");
	float y9 = caffe::caffe_nextafter(alpha);
	fprintf(stderr, " caffe next after: %f\n", y9);

	fprintf(stderr, "test math function: caffe_rng_uniform\n");
	caffe::caffe_rng_uniform(4, -2.f, 2.f, y10);
	for (auto ret : y10) {
		fprintf(stderr, "%f    ", ret);
	}
	fprintf(stderr, "\n");

	fprintf(stderr, "test math function: caffe_rng_gaussian\n");
	caffe::caffe_rng_gaussian(4, -2.f, alpha, y11);
	for (auto ret : y11) {
		fprintf(stderr, "%f    ", ret);
	}
	fprintf(stderr, "\n");

	fprintf(stderr, "test math function: caffe_rng_bernoulli\n");
	caffe::caffe_rng_bernoulli(4, alpha, y12);
	for (auto ret : y12) {
		fprintf(stderr, "%d    ", ret);
	}
	fprintf(stderr, "\n");

	fprintf(stderr, "test math function: caffe_cpu_dot\n");
	float y13 = caffe::caffe_cpu_dot(3, A, B);
	fprintf(stderr, "caffe cpu dot: %f\n", y13);

	fprintf(stderr, "test math function: caffe_cpu_strided_dot\n");
	float y14 = caffe::caffe_cpu_strided_dot(2, A, 2, B, 2);
	fprintf(stderr, "caffe cpu strided dot: %f\n", y14);

	fprintf(stderr, "test math function: caffe_cpu_hamming_distance\n");
	int y15 = caffe::caffe_cpu_hamming_distance(4, A, C);
	fprintf(stderr, "caffe cpu hamming distance: %d\n", y15);

	fprintf(stderr, "test math function: caffe_cpu_asum\n");
	float y16 = caffe::caffe_cpu_asum(5, C);
	fprintf(stderr, "caffe cpu asum: %f\n", y16);

	fprintf(stderr, "test math function: caffe_sign\n");
	int8_t y17 = caffe::caffe_sign(-10.0f);
	int8_t y18 = caffe::caffe_sign(10.0f);
	fprintf(stderr, "caffe sign: -10.0f: %d, 10.0f: %d\n", y17, y18);

	fprintf(stderr, "test math function: caffe_cpu_scale\n");
	caffe::caffe_cpu_scale(5, alpha, C, y19);
	for (auto ret : y19) {
		fprintf(stderr, "%f    ", ret);
	}
	fprintf(stderr, "\n");

	fprintf(stderr, "test math function: caffe_cpu_sign\n");
	caffe::caffe_cpu_sign(5, C, y20);
	for (auto ret : y20) {
		fprintf(stderr, "%f    ", ret);
	}
	fprintf(stderr, "\n");

	fprintf(stderr, "test math function: caffe_cpu_sgnbit\n");
	caffe::caffe_cpu_sgnbit(5, C, y21);
	for (auto ret : y21) {
		fprintf(stderr, "%f    ", ret);
	}
	fprintf(stderr, "\n");

	fprintf(stderr, "test math function: caffe_cpu_fabs\n");
	caffe::caffe_cpu_fabs(5, C, y22);
	for (auto ret : y22) {
		fprintf(stderr, "%f    ", ret);
	}
	fprintf(stderr, "\n");

	return 0;
}

执行结果如下:

Caffe源码中math_functions文件分析的更多相关文章

  1. Caffe源码中common文件分析

    Caffe源码(caffe version:09868ac , date: 2015.08.15)中的一些重要头文件如caffe.hpp.blob.hpp等或者外部调用Caffe库使用时,一般都会in ...

  2. Caffe源码中syncedmem文件分析

    Caffe源码(caffe version:09868ac , date: 2015.08.15)中有一些重要文件,这里介绍下syncedmem文件. 1.      include文件: (1).& ...

  3. Caffe源码中caffe.proto文件分析

    Caffe源码(caffe version:09868ac , date: 2015.08.15)中有一些重要文件,这里介绍下caffe.proto文件. 在src/caffe/proto目录下有一个 ...

  4. 【神经网络与深度学习】Caffe源码中各种依赖库的作用及简单使用

    1.      Boost库:它是一个可移植.跨平台,提供源代码的C++库,作为标准库的后备. 在Caffe中用到的Boost头文件包括: (1).shared_ptr.hpp:智能指针,使用它可以不 ...

  5. tf源码中的object_detection_tutorial.ipynb文件

    今天看到原来下载的tf源码的目标检测源码中test的代码不知道跑哪儿去了,这里记录一下... Imports import numpy as np import os import six.moves ...

  6. caffe源码学习

    本文转载自:https://buptldy.github.io/2016/10/09/2016-10-09-Caffe_Code/ Caffe简介 Caffe作为一个优秀的深度学习框架网上已经有很多内 ...

  7. 从express源码中探析其路由机制

    引言 在web开发中,一个简化的处理流程就是:客户端发起请求,然后服务端进行处理,最后返回相关数据.不管对于哪种语言哪种框架,除去细节的处理,简化后的模型都是一样的.客户端要发起请求,首先需要一个标识 ...

  8. Android 网络框架之Retrofit2使用详解及从源码中解析原理

    就目前来说Retrofit2使用的已相当的广泛,那么我们先来了解下两个问题: 1 . 什么是Retrofit? Retrofit是针对于Android/Java的.基于okHttp的.一种轻量级且安全 ...

  9. linux源码Makefile的详细分析

    目录 一.概述 1.本文的意义 2.Linux内核Makefile文件组成 二.Linux内核Makefile的“make解析”过程 1 顶层Makefile阶段 1.从总目标uImage说起 2.v ...

随机推荐

  1. 第四周读书笔记——读《我是一只IT小小鸟》有感

             读<我是一只IT小小鸟>有感 这是邓老师倾力推荐的一本书.这本书的标题化用了我们耳熟能详的歌词,算是较有新意吧.更重点在于,这本书的作者不是哪一位大牛,而是一群刚刚走出校 ...

  2. Ionic目录结构

    目录下有以下文件: hooks //google之后这个目录应该是在编译cordova时自定义的脚本命令,方便整合到我们的编译系统和版本控制系统中plugins //cordova插件的目录,插件的安 ...

  3. C++基础学习一(基础之基础)

    开篇:做了这么多年的软件,第一次使用博客的方式记录学习过程,之前都是笔记本(都有一摞了),因为之前一直从事的都是.NET的开发工作,对C++知之甚少,但一直想了解C++这门鼻祖级的语言,现在终于下定决 ...

  4. Stanford机器学习---第十一讲.异常检测

    之前一直在看Standford公开课machine learning中Andrew老师的视频讲解https://class.coursera.org/ml/class/index 同时配合csdn知名 ...

  5. pyenv离线安装python各版本

    1.问题描述: 可能是国内的网络原因,在线用pyenv安装python老是定住没反应 [root@zabbix ~]# pyenv install Downloading Python-.tar.xz ...

  6. javascript获取DOM对象三种方法

    1. getElementByID() getElementByID()方法可返回对拥有指定ID的第一个对象的引用 2. getElementByTagName() getElementByTagNa ...

  7. Hbase-2.0.0_01_安装部署

    该文章是基于 Hadoop2.7.6_01_部署 进行的 1. 主机规划 主机名称 IP信息 内网IP 操作系统 安装软件 备注:运行程序 mini01 10.0.0.11 172.16.1.11 C ...

  8. February 6th, 2018 Week 6th Tuesday

    To be is to be perceived. 存在即被感知. How to interpret this quote? Maybe it means that everything in you ...

  9. 17秋 软件工程 团队第五次作业 Alpha Scrum11

    17秋 软件工程 团队第五次作业 Alpha Scrum11 今日完成的任务 世强:管理员头像图片上传和显示逻辑处理,活动添加及上传图片: 港晨:完成Web界面前后端对接: 树民:标准化后端接口格式: ...

  10. ABAP 内表访问表达式的性能

    内表访问表达式是ABAP 7.4中引入的重要特性,可以使语句变得更加简洁.美观.那么它的读写性能怎么样呢?我进行了一点点测试. 读取 测试代码,使用三种方式读取同一内表,分别是read table关键 ...