TensoFlow自动求导机制

『TensorFlow』第二弹_线性拟合&神经网络拟合_恰是故人归

下面做了三个简单尝试,

  • 利用包含gradients、assign等tf函数直接构建图进行自动梯度下降
  • 利用优化器计算出导数,再将导数应用到变量上
  • 直接使用优化器不显式得到导数

更新参数必须使用assign,这也可能会涉及到控制依赖问题。

# Author : Hellcat
# Time : 2/20/2018 import tensorflow as tf tf.set_random_seed(1000) def get_fake_data(batch_size=8):
x = 20 * tf.random_uniform([batch_size,1],dtype=tf.float32)
y = tf.multiply(x,3) + 1 + tf.multiply(
tf.random_normal([batch_size,1],mean=0,stddev=0.01,dtype=tf.float32),1)
return x, y x, y = get_fake_data() w = tf.Variable(tf.random_uniform([1,1], dtype=tf.float32), name='w')
b = tf.Variable(tf.random_uniform([1,1], dtype=tf.float32), name='b') lr = 0.001 y_pred = tf.add(tf.multiply(w,x),b)
loss = tf.reduce_mean(tf.pow(tf.multiply(0.5,(y_pred - y)),2),axis=0) # 梯度尝试
grad_w, grad_b = tf.gradients(loss,[w,b])
train_w = tf.assign(w,tf.subtract(w,lr*grad_w))
train_b = tf.assign(b,tf.subtract(b,lr*grad_b))
train = [train_w, train_b] # 使用优化器
# optimizer = tf.train.GradientDescentOptimizer(lr) # 优化器&学习率选择
# ## 优化器+梯度操作
# grads_and_vars = optimizer.compute_gradients(loss, [w,b])
# train = optimizer.apply_gradients(grads_and_vars)
## 优化器径直优化
# train = optimizer.minimize(loss) with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for ii in range(80000):
sess.run([train])
if ii % 1000 == 0:
print(sess.run(w),sess.run(b))

PyTorch自动求导机制

由于梯度是会累加的,所以清空梯度一定不要忘记。

import torch as t
from torch.autograd import Variable as V
import matplotlib.pyplot as plt
from IPython import display # 指定随机数种子
t.manual_seed(1000) def get_fake_data(batch_size=8):
x = t.rand(batch_size,1)*20
y = x * 2 + 3 + 3*t.randn(batch_size,1)
return x, y x, y = get_fake_data()
plt.scatter(x.squeeze(), y.squeeze()) w = V(t.rand(1,1),requires_grad=True)
b = V(t.rand(1,1),requires_grad=True) lr = 0.001 for ii in range(8000):
x, y = get_fake_data()
x, y = V(x), V(y)
# print(x, y)
y_pred = x.mm(w) + b.expand_as(x) loss = 0.5*(y_pred - y)**2
loss = loss.sum() # 集结loss向量 loss.backward() w.data.sub_(lr * w.grad.data)
b.data.sub_(lr * b.grad.data) w.grad.data.zero_()
b.grad.data.zero_() if ii % 1000 == 0:
display.clear_output(wait=True)
x = t.arange(0,20).view(-1,1)
y = x.mm(w.data) + b.data.expand_as(x)
plt.plot(x.numpy(), y.numpy())
x2, y2 = get_fake_data(batch_size=20)
plt.scatter(x2, y2) plt.xlim(0,20)
plt.ylim(0,40)
plt.show() print(w.data.squeeze(), b.data.squeeze())

『PyTorch x TensorFlow』第六弹_从最小二乘法看自动求导的更多相关文章

  1. 『PyTorch x TensorFlow』第八弹_基本nn.Module层函数

    『TensorFlow』网络操作API_上 『TensorFlow』网络操作API_中 『TensorFlow』网络操作API_下 之前也说过,tf 和 t 的层本质区别就是 tf 的是层函数,调用即 ...

  2. 『TensorFlow』第七弹_保存&载入会话_霸王回马

    首更: 由于TensorFlow的奇怪形式,所以载入保存的是sess,把会话中当前激活的变量保存下来,所以必须保证(其他网络也要求这个)保存网络和载入网络的结构一致,且变量名称必须一致,这是caffe ...

  3. [深度学习] pytorch学习笔记(1)(数据类型、基础使用、自动求导、矩阵操作、维度变换、广播、拼接拆分、基本运算、范数、argmax、矩阵比较、where、gather)

    一.Pytorch安装 安装cuda和cudnn,例如cuda10,cudnn7.5 官网下载torch:https://pytorch.org/ 选择下载相应版本的torch 和torchvisio ...

  4. 『TensorFlow』第十一弹_队列&多线程&TFRecod文件_我辈当高歌

    TF数据读取队列机制详解 一.TFR文件多线程队列读写操作 TFRecod文件写入操作 import tensorflow as tf def _int64_feature(value): # val ...

  5. 『TensorFlow』第十弹_队列&多线程_道路多坎坷

    一.基本队列: 队列有两个基本操作,对应在tf中就是enqueue&dequeue tf.FIFOQueue(2,'int32') import tensorflow as tf '''FIF ...

  6. 『TensorFlow』第三弹_可视化框架介绍_悄悄问圣僧

    添加记录节点 -> 汇总记录节点 -> run汇总节点 -> [书写器生成]书写入文件 [-> 刷新缓冲区] 可视化关键点: 注意, 1.with tf.name_scope( ...

  7. 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_下

    『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上 # Author : Hellcat # Time : 2018/2/11 import torch as t import t ...

  8. 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上

    总结一下相关概念: torch.Tensor - 一个近似多维数组的数据结构 autograd.Variable - 改变Tensor并且记录下来操作的历史记录.和Tensor拥有相同的API,以及b ...

  9. pytorch的自动求导机制 - 计算图的建立

    一.计算图简介 在pytorch的官网上,可以看到一个简单的计算图示意图, 如下. import torchfrom torch.autograd import Variable x = Variab ...

随机推荐

  1. vue中使用mui滑动条无法正常滑动

    需要引入 `mui.min.js`  引入之后浏览器会报错,mui.min.js中的'caller', 'callee', and 'arguments'是不严格模式的js,而webpack中是严格模 ...

  2. springMVC(五): 通过 HandlerMapping 获取 HandlerExecutionChain

    请求具体过程 一.HandlerMapping Interface to be implemented by objects that define a mapping between request ...

  3. PyQt5信号、定时器及多线程

    信号 信号是用于界面自动变化的一个工具,原理是信号绑定了一个函数,当信号被触发时函数即被调用 举个例子 from PyQt5 import QtWidgets,QtCore from untitled ...

  4. 一个项目中mysql数据库经常死锁的问题解决记录

    1.问题描述 此项目为一个物流系统,需要使用PDA对货物进行入库.备货.出货等操作,在系统开发测试过程中,经常发现死锁问题. 有这样一种业务场景:仓库对备货单上货进行扫码备货后,点击"完成& ...

  5. Nginx、Tomcat配置https

    一.Nginx.Tomcat配置https 前提就是已经得到了CA机构颁发的证书 一.合并证书 1.假设证书文件如下 秘钥文件server.key,证书CACertificate-INTERMEDIA ...

  6. 【Gradle】-NO.101.Gradle.1.gradle.1.001-【Gradle Configuration】-(

    Style:Gradle Series:Gradle Since:2018-09-20 End:2018-09-20 Total Hours:1 Degree Of Diffculty:5 Degre ...

  7. 转载的web server实例

    asp.net—web server模拟网上购物 2014-05-08     我来说两句   来源:asp.net—web server模拟网上购物   收藏    我要投稿 在学vb的时候学到了a ...

  8. mysql order by 多个字段排序

    工作中需用到order by 后两个字段排序,但结果却产生了一个Bug,以此备录. [1]复现问题场景 为了说明问题,模拟示例数据库表students,效果同实例. 如下语句Sql_1: SELECT ...

  9. AI 基础

    what AI ? 人工智能(Artificial Intelligence),英文缩写为AI. 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的 ...

  10. linux bash tutorial

    bash read-special-keys-in-bash xdotool linux 登录启动顺序