Description

已经使 Modoka 有签订契约, 和自己一起战斗的想法后 , Mami 忽然感到自己不再是孤单一人了呢.

于是, 之前的谨慎的战斗作风也消失了 , 在对 Charlotte 的傀儡使用终曲——Tiro Finale后 , Mami 面临着即将被 Charlotte 的本体吃掉的局面.

这时, 已经多次面对过 Charlotte 的 Homura 告诉了学 OI 的你这样一个性质——Charlotte的结界中有两种具有能量的元素——一种是“糖果” , 另一种是“药片” , 每种各有 n 个. 在Charlotte 发动进攻前, “糖果”和“药片”会两两配对,若恰好“糖果”比“药片”能量大的组数比“药片”比“糖果”能量大的组数多 k 组, 则在这种局面下, Charlotte 的攻击会丢失,从而 Mami 仍有消灭 Charlotte 的可能. 你必须根据 Homura 告诉你的“糖果”和“药片”的能量的信息迅速告诉 Homura 这种情况的个数.

Input

第一行两个整数 n, k, 含义如题目描述.

接着第二行 n 个整数, 第 i 个数表示第 i 个糖果的能量.

第三行 n 个整数, 第 j 个数表示第 j 个药片 的能量.

Output

一个整数, 表示消灭 Charlotte 的情况个数.

答案可能会很大, 所以 mod (1 0^9 + 9)

Sample Input

4 2

5 35 15 45

40 20 10 30

Sample Output

4

我们先将糖果和药片分别排序,然后设t[i]表示比第i个糖果能量小的编号最大的药片的编号。

表示前i个糖果,已经配对了j组“糖果>药片”的方案数。

然后剩下的糖果在随意分配,也就是说

然后我们的答案就是糖果>药片的组数刚好为(n+k)/2的方案数。

因为f[n][i]表示的是至少有i组糖果>药片的方案数,所以我们要容斥。设容斥系数为g[i],则,然后答案就是

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<set>
#include<map>
#include<vector>
#include<ctime>
#define ll long long
#define N 2005
#define mod 1000000009 using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;} int n;
int k;
int a[N],b[N];
int t[N];
ll f[N][N],ans,fac[N];
ll g[N],c[N][N];
int main() {
n=Get(),k=Get();
for(int i=1;i<=n;i++) a[i]=Get();
for(int i=1;i<=n;i++) b[i]=Get();
sort(a+1,a+1+n);
sort(b+1,b+1+n);
if((n-k)&1) {cout<<0;return 0;}
k=(n+k)/2;
int tem=0;
for(int i=1;i<=n;i++) {
while(tem<n&&a[i]>b[tem+1]) tem++;
t[i]=tem;
}
f[0][0]=1;
for(int i=1;i<=n;i++) {
f[i][0]=1;
for(int j=1;j<=n;j++) {
f[i][j]=f[i-1][j];
if(t[i]>=j) {
(f[i][j]+=f[i-1][j-1]*(t[i]-j+1)%mod)%=mod;
}
}
}
fac[0]=1;
for(int i=1;i<=n;i++) fac[i]=fac[i-1]*i%mod;
for(int i=0;i<=n;i++) {
f[n][i]=f[n][i]*fac[n-i]%mod;
}
c[0][0]=1;
for(int i=1;i<=n;i++)
for(int j=0;j<=i;j++)
c[i][j]=(!j||i==j)?1:(c[i-1][j-1]+c[i-1][j])%mod;
g[k]=1;
for(int i=k+1;i<=n;i++) {
for(int j=k;j<i;j++) {
g[i]=(g[i]-g[j]*c[i][j]%mod+mod)%mod;
}
}
for(int i=k;i<=n;i++) {
ans=(ans+g[i]*f[n][i]%mod+mod)%mod;
}
cout<<ans;
return 0;
}

【BZOJ3622】已经没有什么好害怕的了的更多相关文章

  1. [bzoj3622]已经没有什么好害怕的了_动态规划_容斥原理

    bzoj-3622 已经没有什么好害怕的了 题目大意: 数据范围:$1\le n \le 2000$ , $0\le k\le n$. 想法: 首先,不难求出药片比糖果小的组数. 紧接着,我开始的想法 ...

  2. bzoj3622已经没有什么好害怕的了

    bzoj3622已经没有什么好害怕的了 题意: 给n个数Ai,n个数Bi,将Ai中的数与Bi中的数配对,求配对Ai比Bi大的比Bi比Ai大的恰好有k组的方案数.n,k≤2000 题解: 蒟蒻太弱了只能 ...

  3. [BZOJ3622]已经没有什么好害怕的了(容斥DP)

    给定两个数组a[n]与b[n](数全不相等),两两配对,求“a比b大”的数对比“b比a大”的数对个数多k的配对方案数. 据说做了这题就没什么题好害怕的了,但感觉实际上这是一个套路题,只是很难想到. 首 ...

  4. BZOJ3622 已经没有什么好害怕的了 【dp + 二项式反演】

    题目链接 BZOJ3622 题解 既已开题 那就已经没有什么好害怕的了 由题目中奇怪的条件我们可以特判掉\(n - k\)为奇数时答案为\(0\) 否则我们要求的就是糖果大于药片恰好有\(\frac{ ...

  5. bzoj3622已经没有什么好害怕的了 dp+组合+容斥(?)

    3622: 已经没有什么好害怕的了 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1033  Solved: 480[Submit][Status][ ...

  6. BZOJ3622 已经没有什么好害怕的了 动态规划 容斥原理 组合数学

    原文链接https://www.cnblogs.com/zhouzhendong/p/9276479.html 题目传送门 - BZOJ3622 题意 给定两个序列 $a,b$ ,各包含 $n$ 个数 ...

  7. BZOJ3622 已经没有什么好害怕的了(动态规划+容斥原理)

    显然可以转化为一个阶梯状01矩阵每行每列取一个使权值和为k的方案数.直接做不可做,考虑设f[i][j]为前i行权值和至少为j,即在其中固定了j行选1的方案数.设第i行从1~a[i]列都是1且a[i]+ ...

  8. BZOJ3622 已经没有什么好害怕的了

    Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output 4 HINT 输入的2*n个数字保证全不相 ...

  9. 【BZOJ3622】已经没什么好害怕的了 容斥原理+dp

    Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output 4 HINT 输入的2*n个数字保证全不相 ...

  10. 洛谷 P4859 && BZOJ3622: 已经没有什么好害怕的了

    题目描述 给出 \(n\) 个数 \(a_i\)​ ,以及 \(n\) 个数 \(b_i\)​ ,要求两两配对使得 \(a>b\) 的对数减去 \(a<b\) 的对数等于 \(k\) . ...

随机推荐

  1. shiro源码篇 - shiro的session共享,你值得拥有

    前言 开心一刻 老师对小明说:"乳就是小的意思,比如乳猪就是小猪,乳名就是小名,请你用乳字造个句" 小明:"我家很穷,只能住在40平米的乳房" 老师:" ...

  2. 基于Visual Studio .NET2015的单元测试

    基于Visual Studio .NET2015的单元测试 1.    在Visual Studio .NET2015中创建任意项目. 2.    在某个公共类的公共方法的名称上面点击右键,选择“创建 ...

  3. 排版-标题及table

    排版-标题 在标题中还可以包含small标签,可以用来标记副标题 副标题灰色,比主标题小    <h1>我是标题 <small>我是小标题</small></ ...

  4. CentOS 7 安装 .Net Core 2.0 详细步骤

    轰轰烈烈的Core 热潮,从部署环境开始.参照了网上不少前辈的教程,也遇到不少的坑,这边做个完整的笔记. 一.构建.Net core 2的应用程web发布,因为是用来测试centos上的core 环境 ...

  5. VB.NET语法小结

    本人精通C#编程,VB没有开发经验,项目维护需要,特意整理了下VB语法,进行恶补.编程思想都是互通的,都是微软生的,语言大同小异. Imports System 一.(1)定义一个变量,并且初始化. ...

  6. 深入理解JVM——虚拟机GC

    对象是否存活 Java的GC基于可达性分析算法(Python用引用计数法),通过可达性分析来判定对象是否存活.这个算法的基本思想是通过一系列"GC Roots"的对象作为起始点,从 ...

  7. Strange Way to Express Integers(中国剩余定理+不互质)

    Strange Way to Express Integers Time Limit:1000MS Memory Limit:131072KB 64bit IO Format:%I64d & ...

  8. jQuery点击页面其他部分隐藏下拉菜单

    一.开发小要点 web页面中,我们一般不用select.option来实现下拉菜单效果,因为下拉框的样式丑且难以美化,所以我们选择控制ul显示隐藏来实现同样且高大上的效果,但是不能像下拉框那样点击页面 ...

  9. React中使用百度地图API

    今天我们来搞一搞如何在React中使用百度地图API好吧,最近忙的头皮发麻,感觉身体被掏空,所以很久都没来写博客了,但今天我一定要来一篇好吧 话不多说,我们直接开始好吧 特别注意:该React项目是用 ...

  10. 03--css形状--css揭秘

    形状 一 自适应的椭圆 1.难题 1> 圆 你可能注意到过, 给任何正方形元素设置一个足够大的border-radius, 就可以把它变成一个圆形.所用到的CSS 代码如下所示: #bd { w ...