Bumped!【最短路】(神坑
问题 B: Bumped!
时间限制: 1 Sec 内存限制: 128 MB
提交: 351 解决: 44
[提交] [状态] [命题人:admin]
题目描述
Peter returned from the recently held ACM ICPC World finals only to find that his return flight was overbooked and he was bumped from the flight! Well, at least he wasn’t beat up by the
airline and he’s received a voucher for one free flight between any two destinations he wishes.
He is already planning next year’s trip. He plans to travel by car where necessary, but he may be using his free flight ticket for one leg of the trip. He asked for your help in his planning.
He can provide you a network of cities connected by roads, the amount it costs to buy gas for traveling between pairs of cities, and a list of available flights between some of those cities. Help Peter by finding the minimum amount of money he needs to spend to get from his hometown to next year’s destination!
输入
The input consists of a single test case. The first line lists five space-separated integers n, m, f, s, and t, denoting the number of cities n (0 < n ≤ 50 000), the number of roads m (0 ≤ m ≤ 150 000), the number of flights f (0 ≤ f ≤ 1 000), the number s (0 ≤ s < n) of the city in which Peter’s trip starts, and the number t (0 ≤ t < n) of the city Peter is trying to travel to. (Cities are numbered from 0 to n − 1.)
The first line is followed by m lines, each describing one road. A road description contains three space-separated integers i, j, and c (0 ≤ i, j < n, i 6= j and 0 < c ≤ 50 000), indicating there is a road connecting cities i and j that costs c cents to travel. Roads can be used in either direction for the same cost. All road descriptions are unique.
Each of the following f lines contains a description of an available flight, which consists of two space-separated integers u and v (0 ≤ u, v < n, u 6= v) denoting that a flight from city u to city v is available (though not from v to u unless listed elsewhere). All flight descriptions are unique.
输出
Output the minimum number of cents Peter needs to spend to get from his home town to the competition,using at most one flight. You may assume that there is a route on which Peter can reach his destination.
样例输入
8 11 1 0 5
0 1 10
0 2 10
1 2 10
2 6 40
6 7 10
5 6 10
3 5 15
3 6 40
3 4 20
1 4 20
1 3 20
4 7
样例输出
45
题意:n个点,m条边,f条飞行路线,s起始点,t终点
其中f条飞行路线可以使一条边的距离为0;
这题很坑,相当坑,有如下几点
1. 不管f有多少条 ,只能选一条 ,所以我们枚举每一条f边为0,去求最短路;
2. 如果f=0,别直接不跑了
3. 数据范围是long long ,如果初始化为INF 就会WA!! 太坑了! 改成9999999999或更多(在此WA了几百发,留下惨痛教训)
#include<bits/stdc++.h>
using namespace std;
#define pb push_back
#define mp make_pair
#define rep(i,a,n) for(int i=a;i<n;++i)
#define readc(x) scanf("%c",&x)
#define read(x) scanf("%d",&x)
#define sca(x) scanf("%d",&x)
#define read2(x,y) scanf("%d%d",&x,&y)
#define read3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define print(x) printf("%d\n",x)
#define mst(a,b) memset(a,b,sizeof(a))
#define lowbit(x) x&-x
#define lson(x) x<<1
#define rson(x) x<<1|1
#define pb push_back
#define mp make_pair
typedef long long ll;
typedef pair<ll,ll> P;
const int INF =0x3f3f3f3f;
const int inf =0x3f3f3f3f;
const int mod = 1e9+7;
const int MAXN = 105;
const int maxn =1000010;
using namespace std;
struct node{
ll to;
ll cost;
bool operator < (node b)const{
return cost > b.cost;
}
};
struct edge{
ll to;
ll cost;
};
vector<edge> E[maxn];
int vis[maxn];
ll dis[maxn];
priority_queue<node>q;
ll x,y,z;
ll n,m,f,st,ed;
void Dijkstra(ll s){
memset(vis,0,sizeof vis);
for(int i = 0; i < n; i++)
dis[i] = 9999999999;
while(!q.empty())
q.pop();
dis[s] = 0;
q.push(node{s,0});
node tmp;
while(!q.empty()){
tmp = q.top();
q.pop();
ll u = tmp.to;
if(vis[u])
continue;
vis[u] = 1;
for(int i = 0; i < E[u].size(); i++){
ll v = E[u][i].to;
ll w = E[u][i].cost;
if(!vis[v] && dis[v] > dis[u] + w){
dis[v] = dis[u] + w;
q.push(node{v,dis[v]});
}
}
}
}
int main(){
scanf("%lld%lld%lld%lld%lld",&n,&m,&f,&st,&ed);
while(m--){
scanf("%lld%lld%lld",&x,&y,&z);
E[x].pb(edge{y,z});
E[y].pb(edge{x,z});
}
ll ans = 9999999999;
Dijkstra(st);
ans = dis[ed];
while(f--){
scanf("%lld%lld",&x,&y);
E[x].pb(edge{y,0});
Dijkstra(st);
ans = min(ans,dis[ed]) ;
E[x].erase(E[x].end() - 1);
}
printf("%lld\n",ans);
return 0;
}
/*
6 7 2 0 5
0 1 10
0 3 5
1 4 10
2 3 5
0 5 100
4 5 5
2 5 5
0 2
1 3
*/
Bumped!【最短路】(神坑的更多相关文章
- upc组队赛6 Bumped!【最短路】
Bumped! 题目描述 Peter returned from the recently held ACM ICPC World finals only to find that his retur ...
- Bumped! 2017 ICPC North American Qualifier Contest (分层建图+dijstra)
题目描述 Peter returned from the recently held ACM ICPC World finals only to find that his return flight ...
- POJ-2387Til the Cows Come Home,最短路坑题,dijkstra+队列优化
Til the Cows Come Home Time Limit: 1000MS Memory Limit: 65536K http://poj.org/problem?id=238 ...
- Bumped!【迪杰斯特拉消边、堆优化】
Bumped! 题目链接(点击) Peter returned from the recently held ACM ICPC World Finals only to find that his r ...
- 【译】Unity3D Shader 新手教程(5/6) —— Bumped Diffuse Shader
本文为翻译,附上原文链接. 转载请注明出处--polobymulberry-博客园. 动机 如果你满足以下条件,我建议你阅读这篇教程: 你想学习片段着色器(Fragment Shader). 你想实现 ...
- bzoj1001--最大流转最短路
http://www.lydsy.com/JudgeOnline/problem.php?id=1001 思路:这应该算是经典的最大流求最小割吧.不过题目中n,m<=1000,用最大流会TLE, ...
- 【USACO 3.2】Sweet Butter(最短路)
题意 一个联通图里给定若干个点,求他们到某点距离之和的最小值. 题解 枚举到的某点,然后优先队列优化的dijkstra求最短路,把给定的点到其的最短路加起来,更新最小值.复杂度是\(O(NElogE) ...
- Sicily 1031: Campus (最短路)
这是一道典型的最短路问题,直接用Dijkstra算法便可求解,主要是需要考虑输入的点是不是在已给出的地图中,具体看代码 #include<bits/stdc++.h> #define MA ...
- 最短路(Floyd)
关于最短的先记下了 Floyd算法: 1.比较精简准确的关于Floyd思想的表达:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B.所以,我们假设maz ...
随机推荐
- Java课程寒假之开发记账本软件(网页版)之五
一.实现基本功能之后 可以添加其他功能,比如说添加账户,删除账户,以及查询页面的分页.(我都没写,滑稽) 二.基本功能部分截图
- spring和jdbctemplate
1.spring与jdbc整合应用 a.增删改 -获取connection -获取statement -设置sql中?参数 -执行sql操作 -释放connection b.查询 -获取connect ...
- 13 form表单
form表单中可包括 <input > 类型包括 text(name,value) password(name,value) checkbox(name,value) radio(chec ...
- 【Java线程安全】 — ThreadLocal
[用法] 首先明确,ThreadLocal是用空间换时间来解决线程安全问题的,方法是各个线程拥有自己的变量副本. 既然如此,那么是涉及线程安全,必然有一个共享变量,我给大家声明一个: public c ...
- python——shopping car
# _Author:huang# date: 2017/11/26 # 简单的购物车程序money = input("money:") product_list = [ (&quo ...
- 细说一下position(定位),以及其他的小知识
细说:position 位置 1.只要使用定位,必须要有一个相对的参照物.relative 2.具体定位的那个1元素需要加position:absolute:绝对的 绝对的:就是具体到某一个 ...
- SQLSERVER CTE表 row_number()字段 BUG
当CTE中 引用的子视图的字段用了 row_number() over等那么有可能造成row_number() 的对应关系出错的问题 所以CTE row_number() over 排序字段 必须 ...
- python全栈开发 * 01知识点汇总 * 180530
一 python简介. 1.创始人: 吉多 .范罗苏姆 \ (Guido van Rossum). 2.时间 : 1989年. 3.主要应用领域 : 云计算 \ WEB开发 \ ...
- (二)juc线程高级特性——CountDownLatch / Callable / Lock
5. CountDownLatch 闭锁 Java 5.0 在 java.util.concurrent 包中提供了多种并发容器类来改进同步容器的性能. CountDownLatch 一个同步辅助类, ...
- 内层DIV超出后,出现滚动条问题
使用:overflowy:'unset'属性,可以解决