问题 B: Bumped!

时间限制: 1 Sec  内存限制: 128 MB

提交: 351  解决: 44

[提交] [状态] [命题人:admin]

题目描述

Peter returned from the recently held ACM ICPC World finals only to find that his return flight was overbooked and he was bumped from the flight! Well, at least he wasn’t beat up by the

airline and he’s received a voucher for one free flight between any two destinations he wishes.

He is already planning next year’s trip. He plans to travel by car where necessary, but he may be using his free flight ticket for one leg of the trip. He asked for your help in his planning.

He can provide you a network of cities connected by roads, the amount it costs to buy gas for traveling between pairs of cities, and a list of available flights between some of those cities. Help Peter by finding the minimum amount of money he needs to spend to get from his hometown to next year’s destination!

输入

The input consists of a single test case. The first line lists five space-separated integers n, m, f, s, and t, denoting the number of cities n (0 < n ≤ 50 000), the number of roads m (0 ≤ m ≤ 150 000), the number of flights f (0 ≤ f ≤ 1 000), the number s (0 ≤ s < n) of the city in which Peter’s trip starts, and the number t (0 ≤ t < n) of the city Peter is trying to travel to. (Cities are numbered from 0 to n − 1.)

The first line is followed by m lines, each describing one road. A road description contains three space-separated integers i, j, and c (0 ≤ i, j < n, i 6= j and 0 < c ≤ 50 000), indicating there is a road connecting cities i and j that costs c cents to travel. Roads can be used in either direction for the same cost. All road descriptions are unique.

Each of the following f lines contains a description of an available flight, which consists of two space-separated integers u and v (0 ≤ u, v < n, u 6= v) denoting that a flight from city u to city v is available (though not from v to u unless listed elsewhere). All flight descriptions are unique.

输出

Output the minimum number of cents Peter needs to spend to get from his home town to the competition,using at most one flight. You may assume that there is a route on which Peter can reach his destination.

样例输入

8 11 1 0 5
0 1 10
0 2 10
1 2 10
2 6 40
6 7 10
5 6 10
3 5 15
3 6 40
3 4 20
1 4 20
1 3 20
4 7

样例输出

45

题意:n个点,m条边,f条飞行路线,s起始点,t终点

其中f条飞行路线可以使一条边的距离为0;

这题很坑,相当坑,有如下几点

1.  不管f有多少条 ,只能选一条 ,所以我们枚举每一条f边为0,去求最短路;

2. 如果f=0,别直接不跑了

3. 数据范围是long long ,如果初始化为INF 就会WA!!  太坑了! 改成9999999999或更多(在此WA了几百发,留下惨痛教训)

#include<bits/stdc++.h>
using namespace std;
#define pb push_back
#define mp make_pair
#define rep(i,a,n) for(int i=a;i<n;++i)
#define readc(x) scanf("%c",&x)
#define read(x) scanf("%d",&x)
#define sca(x) scanf("%d",&x)
#define read2(x,y) scanf("%d%d",&x,&y)
#define read3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define print(x) printf("%d\n",x)
#define mst(a,b) memset(a,b,sizeof(a))
#define lowbit(x) x&-x
#define lson(x) x<<1
#define rson(x) x<<1|1
#define pb push_back
#define mp make_pair
typedef long long ll;
typedef pair<ll,ll> P;
const int INF =0x3f3f3f3f;
const int inf =0x3f3f3f3f;
const int mod = 1e9+7;
const int MAXN = 105;
const int maxn =1000010;
using namespace std;
struct node{
    ll to;
    ll cost;
    bool operator < (node b)const{
        return cost > b.cost;
    }
};
struct edge{
    ll to;
    ll cost;
};
vector<edge> E[maxn];
int vis[maxn];
ll dis[maxn];
priority_queue<node>q;
ll x,y,z;
ll n,m,f,st,ed;

void Dijkstra(ll s){
    memset(vis,0,sizeof vis);
    for(int i = 0; i < n; i++)
        dis[i] = 9999999999;
    while(!q.empty())
        q.pop();
    dis[s] = 0;
    q.push(node{s,0});
    node tmp;
    while(!q.empty()){
        tmp = q.top();
        q.pop();
        ll u = tmp.to;
        if(vis[u])
            continue;
        vis[u] = 1;
        for(int i = 0; i < E[u].size(); i++){
            ll v = E[u][i].to;
            ll w = E[u][i].cost;
            if(!vis[v] && dis[v] > dis[u] + w){
                dis[v] = dis[u] + w;
                q.push(node{v,dis[v]});
            }
        }
    }
}

int main(){
    scanf("%lld%lld%lld%lld%lld",&n,&m,&f,&st,&ed);
    while(m--){
        scanf("%lld%lld%lld",&x,&y,&z);
        E[x].pb(edge{y,z});
        E[y].pb(edge{x,z});
    }
    ll ans = 9999999999;
    Dijkstra(st);
    ans = dis[ed];
    while(f--){
        scanf("%lld%lld",&x,&y);
        E[x].pb(edge{y,0});
        Dijkstra(st);
        ans = min(ans,dis[ed]) ;
        E[x].erase(E[x].end() - 1);
    }
    printf("%lld\n",ans);
    return 0;
}
/*
6 7 2 0 5
0 1 10
0 3 5
1 4 10
2 3 5
0 5 100
4 5 5
2 5 5
0 2
1 3
*/

Bumped!【最短路】(神坑的更多相关文章

  1. upc组队赛6 Bumped!【最短路】

    Bumped! 题目描述 Peter returned from the recently held ACM ICPC World finals only to find that his retur ...

  2. Bumped! 2017 ICPC North American Qualifier Contest (分层建图+dijstra)

    题目描述 Peter returned from the recently held ACM ICPC World finals only to find that his return flight ...

  3. POJ-2387Til the Cows Come Home,最短路坑题,dijkstra+队列优化

    Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K       http://poj.org/problem?id=238 ...

  4. Bumped!【迪杰斯特拉消边、堆优化】

    Bumped! 题目链接(点击) Peter returned from the recently held ACM ICPC World Finals only to find that his r ...

  5. 【译】Unity3D Shader 新手教程(5/6) —— Bumped Diffuse Shader

    本文为翻译,附上原文链接. 转载请注明出处--polobymulberry-博客园. 动机 如果你满足以下条件,我建议你阅读这篇教程: 你想学习片段着色器(Fragment Shader). 你想实现 ...

  6. bzoj1001--最大流转最短路

    http://www.lydsy.com/JudgeOnline/problem.php?id=1001 思路:这应该算是经典的最大流求最小割吧.不过题目中n,m<=1000,用最大流会TLE, ...

  7. 【USACO 3.2】Sweet Butter(最短路)

    题意 一个联通图里给定若干个点,求他们到某点距离之和的最小值. 题解 枚举到的某点,然后优先队列优化的dijkstra求最短路,把给定的点到其的最短路加起来,更新最小值.复杂度是\(O(NElogE) ...

  8. Sicily 1031: Campus (最短路)

    这是一道典型的最短路问题,直接用Dijkstra算法便可求解,主要是需要考虑输入的点是不是在已给出的地图中,具体看代码 #include<bits/stdc++.h> #define MA ...

  9. 最短路(Floyd)

    关于最短的先记下了 Floyd算法: 1.比较精简准确的关于Floyd思想的表达:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B.所以,我们假设maz ...

随机推荐

  1. ZooKeeper注册中心安装详细步骤(单节点)

    安装 Dubbo 注册中心 Dubbo 建议使用 Zookeeper 作为服务的注册中心. 注册中心服务器(192.168.3.71)配置,安装 Zookeeper: 1. 修改操作系统的/etc/h ...

  2. FatMouse' Trade(杭电ACM---1009)

    FatMouse' Trade Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  3. 怎样把Word文档导入Excel表格

    Word是现在办公中的基础文件格式了,很多的内容我们都通过Word来进行编辑,那么当我们需要将Word文档里的信息导入到Excel里面的时候,我们应该怎样做呢?下面我们就一起来看一下吧. 操作步骤: ...

  4. torch.nn.Embedding

    自然语言中的常用的构建词向量方法,将id化后的语料库,映射到低维稠密的向量空间中,pytorch 中的使用如下: import torch import torch.utils.data as Dat ...

  5. Improved GAN

    https://www.bilibili.com/video/av9770302/?p=16 从之前讲的basic gan延伸到unified framework,到WGAN 再到通过WGAN进行Ge ...

  6. AngularJS实现可伸缩的页面切换

    AngularJS实现可伸缩的页面切换 AngularJS 1.2 通过引入基于纯CSS class的切换和动画,在一个单页面应用创建页面到页面的切换变得更加的容易.只需要使用一个ng-view,让我 ...

  7. 【转载】word2vec原理推导与代码分析

    本文的理论部分大量参考<word2vec中的数学原理详解>,按照我这种初学者方便理解的顺序重新编排.重新叙述.题图来自siegfang的博客.我提出的Java方案基于kojisekig,我 ...

  8. mongodb 3.2 分片 + 副本集

    从图中可以看到有四个组件:mongos.config server.shard.replica set. mongos,数据库集群请求的入口,所有的请求都通过mongos进行协调,不需要在应用程序添加 ...

  9. redis发布订阅、事务、脚本

    Redis 发布订阅 Redis 发布订阅(pub/sub)是一种消息通信模式:发送者(pub)发送消息,订阅者(sub)接收消息. Redis 客户端可以订阅任意数量的频道. 下图展示了频道 cha ...

  10. dict()的另一种用法

    先了解两个内容: 定义字典的两种方法: d1 = { ‘name’ :‘zzl’} #方法一 d2 = dict( name = 'zzl' ) #方法二 2. __dict__()方法不记录类的属性 ...