STATS 326
Applied Time Series
ASSIGNMENT THREE
Due: 2 May 2019, 11.00 am
(Worth 6% of your final grade)
Hand-in to the appropriate STATS 326 Hand-in box in the Student Resource Centre
This assignment will be marked out of 100. Please follow the instructions carefully. Marks
will be deducted if you include R output, plots etc that are not asked for. Only include what is
requested in each question in your answers. You are encouraged to print your assignment “2-
up” to save paper.

STATS 326作业代写、R实验作业代做、代写R编程设计作业、代做Applied Time Series作业
The data for this assignment is the same as the data used in Assignment Two.
NOTE: Given what was found in Assignment Two with respect to the variables needed for
the best predicting Seasonally Adjusted model of the CO2 Concentration data, you
should be able to fit appropriate final models (without going through any model
building steps) for Questions One and Two.
Question One: [20 marks]
Build a Seasonal Factor model of the data (2000 to 2016). See pages 90 – 96 of the Course
Notes. Calculate predictions for the 4 quarters of 2017 using your final model. Compare the
model’s forecasts with the actual values for 2017.
In your assignment only include the following for the best predicting Seasonal Factor
model: the R summary output for the best predicting model, the R commands and output
used to do the predictions and the R commands and output used to compare the predictions
with the actual values for 2017. Briefly comment on the model.
Question Two: [25 marks]
Find the best predicting Harmonic model of the data (2000 to 2016). See pages 97 – 114 of
the Course Notes.
In your assignment only include the following for the best predicting Harmonic model: the
R summary output for the best predicting model, the R commands and output used to do the
predictions and the R commands and output used to compare the predictions with the actual
values for 2017. Briefly comment on the best predicting model. Briefly discuss the other
Harmonic models that you tried and briefly ex-plain why they were rejected.
For Questions Three and Four, use the best predicting model from Questions One and
Two.
Question Three: [30 marks]
Write up a brief set of Technical Notes for the best predicting model. You do not need to
discuss any model building steps. You should also discuss the predictions and their
reliability.
Question Four: [20 marks]
Re-run the best predicting model using all the available data (2000 to 2017) and do
predictions for the 4 quarters of 2018. You are not required to do any model building in this
question. Just use the best predicting model from Questions One and Two.
In your assignment only include the R commands and output for the best predicting model
and the R commands and output for the 2018 predictions. Briefly comment on the model.
Question Five: [5 marks]
Which is the best predicting model from Assignments Two and Three? Justify your choice.

因为专业,所以值得信赖。如有需要,请加QQ:99515681 或邮箱:99515681@qq.com

微信:codinghelp

STATS 326 Applied Time Series的更多相关文章

  1. Python数据分析之pandas学习

    Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利 ...

  2. python 数据分析--pandas

    接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析 ...

  3. 学机器学习,不会数据处理怎么行?—— 二、Pandas详解

    在上篇文章学机器学习,不会数据处理怎么行?—— 一.NumPy详解中,介绍了NumPy的一些基本内容,以及使用方法,在这篇文章中,将接着介绍另一模块——Pandas.(本文所用代码在这里) Panda ...

  4. (转)Awesome Object Detection

    Awesome Object Detection 2018-08-10 09:30:40 This blog is copied from: https://github.com/amusi/awes ...

  5. pandas2

    1.Series创建的方法统一为pd.Series(data,index=)(1,2,3)Series可以通过三种形式创建:python的dict.numpy当中的ndarray(numpy中的基本数 ...

  6. Python数据分析之pandas

    Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利 ...

  7. Game Engine Architecture 13

    [Game Engine Architecture 13] 1.describe an arbitrary signal x[n] as a linear combination of unit im ...

  8. psu online course

    https://onlinecourses.science.psu.edu/statprogram/programs Graduate Online Course Overviews Printer- ...

  9. An overview of time series forecasting models

    An overview of time series forecasting models 2019-10-04 09:47:05 This blog is from: https://towards ...

随机推荐

  1. 如何判断java对象是否为String数组

    if (entry.getValue() instanceof String[]) {// ko .................... }

  2. 把项目挂载到composer上

    1.打开composer的安装包列表网站,点击submit 2.把刚才初始化了composer的项目push到github上(至于怎么push,最简单就是用git了) 3.然后把github的网址复制 ...

  3. poj 1269

    水题.判断两条直线位置关系. 考虑平行的情况,那么 四边形的面积会相等,重合的话,四边形的面积相等且为0. 除去这两种就一定有交点. #include <cstdio> #include ...

  4. react使用BrowserRouter打包后,刷新页面出现404

    文档 https://gkedge.gitbooks.io/react-router-in-the-real/content/apache.html nginx nginx.conf server { ...

  5. 设置头像、商品、轮播图为背景图时需要的css

    background-repeat: no-repeat;background-size: cover;background-position: center center;

  6. weblogic反序列化漏洞CVE-2018-2628-批量检测脚本

    #coding=utf-8 import socket import time import re,os,sys,codecs type = 'utf-8' reload(sys) sys.setde ...

  7. CString中 format、trimLeft和trimright、trim 和FindOneOf用法

    1.format 可以帮助各种类型转换成CString. a. int 转 CString CString str; int number = 4; str.Format(_T("%d&qu ...

  8. python全栈开发 * 11知识点汇总 * 1806011

    一.函数名的运⽤, 第⼀类对象 函数名是⼀个变量, 但它是⼀个特殊的变量, 与括号配合可以执⾏函数的变量 1. 函数名的内存地址def func(fn): print(fn)print(func) # ...

  9. linux --- 部署前后端分离项目

    vue + uwsgi +nginx 部署前后端分离项目 准备项目 1.将前端vue项目包和后端django项目包上传服务器,通过lrzsz,直接从windows拖进linux中 2.解压缩操作 前端 ...

  10. linux --nginx篇

    NGINX是什么? nginx是开源的,支持高性能的,高并发的www服务和代理服务软件,就是web服务器,nginx不但是一个优秀的web服务软件,还可以做反向代理,负载均衡,以及缓存服务使用. 优点 ...