STATS 326
Applied Time Series
ASSIGNMENT THREE
Due: 2 May 2019, 11.00 am
(Worth 6% of your final grade)
Hand-in to the appropriate STATS 326 Hand-in box in the Student Resource Centre
This assignment will be marked out of 100. Please follow the instructions carefully. Marks
will be deducted if you include R output, plots etc that are not asked for. Only include what is
requested in each question in your answers. You are encouraged to print your assignment “2-
up” to save paper.

STATS 326作业代写、R实验作业代做、代写R编程设计作业、代做Applied Time Series作业
The data for this assignment is the same as the data used in Assignment Two.
NOTE: Given what was found in Assignment Two with respect to the variables needed for
the best predicting Seasonally Adjusted model of the CO2 Concentration data, you
should be able to fit appropriate final models (without going through any model
building steps) for Questions One and Two.
Question One: [20 marks]
Build a Seasonal Factor model of the data (2000 to 2016). See pages 90 – 96 of the Course
Notes. Calculate predictions for the 4 quarters of 2017 using your final model. Compare the
model’s forecasts with the actual values for 2017.
In your assignment only include the following for the best predicting Seasonal Factor
model: the R summary output for the best predicting model, the R commands and output
used to do the predictions and the R commands and output used to compare the predictions
with the actual values for 2017. Briefly comment on the model.
Question Two: [25 marks]
Find the best predicting Harmonic model of the data (2000 to 2016). See pages 97 – 114 of
the Course Notes.
In your assignment only include the following for the best predicting Harmonic model: the
R summary output for the best predicting model, the R commands and output used to do the
predictions and the R commands and output used to compare the predictions with the actual
values for 2017. Briefly comment on the best predicting model. Briefly discuss the other
Harmonic models that you tried and briefly ex-plain why they were rejected.
For Questions Three and Four, use the best predicting model from Questions One and
Two.
Question Three: [30 marks]
Write up a brief set of Technical Notes for the best predicting model. You do not need to
discuss any model building steps. You should also discuss the predictions and their
reliability.
Question Four: [20 marks]
Re-run the best predicting model using all the available data (2000 to 2017) and do
predictions for the 4 quarters of 2018. You are not required to do any model building in this
question. Just use the best predicting model from Questions One and Two.
In your assignment only include the R commands and output for the best predicting model
and the R commands and output for the 2018 predictions. Briefly comment on the model.
Question Five: [5 marks]
Which is the best predicting model from Assignments Two and Three? Justify your choice.

因为专业,所以值得信赖。如有需要,请加QQ:99515681 或邮箱:99515681@qq.com

微信:codinghelp

STATS 326 Applied Time Series的更多相关文章

  1. Python数据分析之pandas学习

    Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利 ...

  2. python 数据分析--pandas

    接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析 ...

  3. 学机器学习,不会数据处理怎么行?—— 二、Pandas详解

    在上篇文章学机器学习,不会数据处理怎么行?—— 一.NumPy详解中,介绍了NumPy的一些基本内容,以及使用方法,在这篇文章中,将接着介绍另一模块——Pandas.(本文所用代码在这里) Panda ...

  4. (转)Awesome Object Detection

    Awesome Object Detection 2018-08-10 09:30:40 This blog is copied from: https://github.com/amusi/awes ...

  5. pandas2

    1.Series创建的方法统一为pd.Series(data,index=)(1,2,3)Series可以通过三种形式创建:python的dict.numpy当中的ndarray(numpy中的基本数 ...

  6. Python数据分析之pandas

    Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利 ...

  7. Game Engine Architecture 13

    [Game Engine Architecture 13] 1.describe an arbitrary signal x[n] as a linear combination of unit im ...

  8. psu online course

    https://onlinecourses.science.psu.edu/statprogram/programs Graduate Online Course Overviews Printer- ...

  9. An overview of time series forecasting models

    An overview of time series forecasting models 2019-10-04 09:47:05 This blog is from: https://towards ...

随机推荐

  1. ES6 export

    一.默认导出(default export)// 1.一个模块只能有一个默认导出, 对于默认导出, 导入的名称可以和导出的名称不一致, 这对于导出匿名函数或类非常有用. <!---- page. ...

  2. poj1279

    板子题,求多边形内核面积. 话说jls的板子返回的是边,然后我就在冥思苦想怎么根据割边求面积啊.. 然后发现自己果然是个傻逼,求一下交点存起来就好了... //板子题到此为止了 #include &l ...

  3. python 接口自动化测试二(request.get)

    环境搭建好后,接下来我们先来了解一下requests的一些简单使用,主要包括: requests常用请求方法使用,包括:get,post requests库中的Session.Cookie的使用 其它 ...

  4. 网站SEO优化问答精选【转载】

    在接触seo的过程中,大家都会碰到很多这样或那样的问题,特别是一些seo新手由于知识有限会经常到很多地方问一些网站优化的问题,做seo时间慢慢变长之后,知识会慢慢地积累,之前的问题也会慢慢的都被解答. ...

  5. django cookies与session

    1. cookiies # cookies def login(request): print('COOKIES',request.COOKIES) print('SESSION',request.s ...

  6. css小知识 2

    效果为 为什么还出现出现不同的效果? 浏览器在解析第二个p的时候,因为第二个字母见没有空格,它会认为这是一个单词没有写完,所以不会换行 列表 1.无序列表ul 第二,内部必须有子代标签<li&g ...

  7. sql中join与left-join图解区别

      select a.* from YG_BRSYK a left join(SELECT DISTINCT SYXH, STUFF((SELECT '.'+MS FROM #lsb where SY ...

  8. fiddler的一些记录

    通过execaction.exe可以给fiddler发命令,控制抓包开始和停止 https://stackoverflow.com/questions/29916508/start-and-stop- ...

  9. 设计模式之——bridge模式

    Bridge模式,又叫桥接模式,是针对同一接口进行扩展与实现操作的一种设计模式. 这种模式,与之前学过的适配器模式具有相似的地方,也有不同的地方,下面就让我们一一解析吧. 首先,我们要了解到,为什么需 ...

  10. 16.2-uC/OS-III同步 (事件标志组)

    事件标志组 1.当任务要与多个事件同步时可以使用事件标志.若其中的任意一个事件发生时任务被就绪, 叫做逻辑或(OR).若所有的事件都发生时任务被就绪,叫做逻辑与( AND). 2.用户可以创建任意个事 ...