STATS 326 Applied Time Series
STATS 326
Applied Time Series
ASSIGNMENT THREE
Due: 2 May 2019, 11.00 am
(Worth 6% of your final grade)
Hand-in to the appropriate STATS 326 Hand-in box in the Student Resource Centre
This assignment will be marked out of 100. Please follow the instructions carefully. Marks
will be deducted if you include R output, plots etc that are not asked for. Only include what is
requested in each question in your answers. You are encouraged to print your assignment “2-
up” to save paper.
STATS 326作业代写、R实验作业代做、代写R编程设计作业、代做Applied Time Series作业
The data for this assignment is the same as the data used in Assignment Two.
NOTE: Given what was found in Assignment Two with respect to the variables needed for
the best predicting Seasonally Adjusted model of the CO2 Concentration data, you
should be able to fit appropriate final models (without going through any model
building steps) for Questions One and Two.
Question One: [20 marks]
Build a Seasonal Factor model of the data (2000 to 2016). See pages 90 – 96 of the Course
Notes. Calculate predictions for the 4 quarters of 2017 using your final model. Compare the
model’s forecasts with the actual values for 2017.
In your assignment only include the following for the best predicting Seasonal Factor
model: the R summary output for the best predicting model, the R commands and output
used to do the predictions and the R commands and output used to compare the predictions
with the actual values for 2017. Briefly comment on the model.
Question Two: [25 marks]
Find the best predicting Harmonic model of the data (2000 to 2016). See pages 97 – 114 of
the Course Notes.
In your assignment only include the following for the best predicting Harmonic model: the
R summary output for the best predicting model, the R commands and output used to do the
predictions and the R commands and output used to compare the predictions with the actual
values for 2017. Briefly comment on the best predicting model. Briefly discuss the other
Harmonic models that you tried and briefly ex-plain why they were rejected.
For Questions Three and Four, use the best predicting model from Questions One and
Two.
Question Three: [30 marks]
Write up a brief set of Technical Notes for the best predicting model. You do not need to
discuss any model building steps. You should also discuss the predictions and their
reliability.
Question Four: [20 marks]
Re-run the best predicting model using all the available data (2000 to 2017) and do
predictions for the 4 quarters of 2018. You are not required to do any model building in this
question. Just use the best predicting model from Questions One and Two.
In your assignment only include the R commands and output for the best predicting model
and the R commands and output for the 2018 predictions. Briefly comment on the model.
Question Five: [5 marks]
Which is the best predicting model from Assignments Two and Three? Justify your choice.
因为专业,所以值得信赖。如有需要,请加QQ:99515681 或邮箱:99515681@qq.com
微信:codinghelp
STATS 326 Applied Time Series的更多相关文章
- Python数据分析之pandas学习
Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利 ...
- python 数据分析--pandas
接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析 ...
- 学机器学习,不会数据处理怎么行?—— 二、Pandas详解
在上篇文章学机器学习,不会数据处理怎么行?—— 一.NumPy详解中,介绍了NumPy的一些基本内容,以及使用方法,在这篇文章中,将接着介绍另一模块——Pandas.(本文所用代码在这里) Panda ...
- (转)Awesome Object Detection
Awesome Object Detection 2018-08-10 09:30:40 This blog is copied from: https://github.com/amusi/awes ...
- pandas2
1.Series创建的方法统一为pd.Series(data,index=)(1,2,3)Series可以通过三种形式创建:python的dict.numpy当中的ndarray(numpy中的基本数 ...
- Python数据分析之pandas
Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利 ...
- Game Engine Architecture 13
[Game Engine Architecture 13] 1.describe an arbitrary signal x[n] as a linear combination of unit im ...
- psu online course
https://onlinecourses.science.psu.edu/statprogram/programs Graduate Online Course Overviews Printer- ...
- An overview of time series forecasting models
An overview of time series forecasting models 2019-10-04 09:47:05 This blog is from: https://towards ...
随机推荐
- Android新特性介绍,ConstraintLayout完全解析
今天给大家带来2017年的第一篇文章,这里先祝大家新年好. 本篇文章的主题是ConstraintLayout.其实ConstraintLayout是Android Studio 2.2中主要的新增功能 ...
- P5173 传球
题目背景 临近中考,pG的班主任决定上一节体育课,放松一下. 题解:https://blog.csdn.net/kkkksc03/article/details/85008120 题目描述 老师带着p ...
- GO语言-基础语法:变量定义
package main import ( "fmt" ) //不在函数内的变量,属于包内的变量.不能使用":="进行定义和赋值 var ( bb = cc = ...
- python2.7.X 升级至Python3.6.X
安装Python3 项目是在py3环境下进行编码的,正好yczhang默认的py版本是2,我们还需要安装py3才能让程序run起来,在此之前,需要安装开发工具包,因为要编译安装Python [root ...
- java项目(学习和研究)
java项目就是研究,不断的对项目进行迭代,把产品做的越来越好,就是research. 自己想着做一个java项目把,可以类似牛客网,想好自己的预期产品,在设计的过程中可以不断改进和扩展,在做这个项目 ...
- D - Nearest Common Ancestors
A rooted tree is a well-known data structure in computer science and engineering. An example is show ...
- laravel的csrf token 的了解及使用
之前在项目中因为没有弄清楚csrf token的使用,导致发请求的话,一直请求失败,今天就一起来看一下csrf的一些东西. 1.Cross-site request forgery 跨站请求伪造,也被 ...
- GC垃圾回收器
java与C++之间有一堵由内存动态分配和垃圾收集技术所围成的“高墙”.jvm解决的两个问题:给对象分配内存以及回收分配给对象的内存.GC:将内存中不再被使用的对象进行回收.GC的作用域是JVM运行时 ...
- centos7忘记root密码重置
1.重启服务器,选择内存按“e”编辑 2.找到下入内容 3.将上图中标记的ro改为rw init=/sysroot/bin/sh 4.按Ctrl+x进入单用户模式 5.执行命令chroot /sysr ...
- Linux下一台服务器Redis主从复制(master-slave)配置
主从概念 ⼀个master可以拥有多个slave,⼀个slave⼜可以拥有多个slave,如此下去,形成了强⼤的多级服务器集群架构 master用来写数据,slave用来读数据,经统计:网站的读写比率 ...