CUDA 例程
scalar add #include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <iostream>
__global__ void add(int *a, int *b,int *c)
{
c[blockIdx.x]=a[blockIdx.x]+b[blockIdx.x];
}
int main(void)
{ // H has storage for 4 integers
int a,b,c;
int *da,*db,*dc;
int size=*sizeof(int); //scalar;
cudaMalloc((void**)&da,size);
cudaMalloc((void**)&db,size);
cudaMalloc((void**)&dc,size); a=;
b=;
cudaMemcpy(da,&a,size,cudaMemcpyHostToDevice);
cudaMemcpy(db,&b,size,cudaMemcpyHostToDevice); add<<<,>>>(da,db,dc);
cudaMemcpy(&c,dc,size,cudaMemcpyDeviceToHost );
std::cout<<c<<std::endl; cudaFree(da);
cudaFree(db);
cudaFree(dc); std::cout<<"hell";
thrust::host_vector<int> H();
// initialize individual elements
H[] = ; H[] = ; H[] = ; H[] = ;
// H.size() returns the size of vector H
std::cout << "H has size " << H.size() << std::endl;
// print contents of H
for(int i = ; i < H.size(); i++) std::cout << "H[" << i << "] = " << H[i] << std::endl;
// resize H
H.resize();
std::cout << "H now has size " << H.size() << std::endl;
// Copy host_vector H to device_vector D
thrust::device_vector<int> D = H;
// elements of D can be modified
D[] = ; D[] = ; // print contents of D
for(int i = ; i < D.size(); i++) std::cout << "D[" << i << "] = " << D[i] << std::endl;
// H and D are automatically deleted when the function returns
return ; }
block or thread #include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <iostream> const int N=;
__global__ void add(int *a, int *b,int *c)
{
c[blockIdx.x]=a[blockIdx.x]+b[blockIdx.x]; //c[threadIdx.x]=a[threadIdx.x]+b[threadIdx.x];
}
int main(void)
{ // H has storage for 4 integers
int *a,*b,*c;
int *da,*db,*dc;
int size=N*sizeof(int); //scalar; cudaMalloc((void**)&da,size);
cudaMalloc((void**)&db,size);
cudaMalloc((void**)&dc,size); a=(int *) malloc(size);
memset(a,,N*sizeof(int));//rand_ints(a,N); a[]=;
a[]=;
b=(int *) malloc(size); memset(b,, N*sizeof(int));// rand_ints(b,N);
b[]=;
b[]=; c=(int *) malloc(size); //rand_ints(c,N);
memset(c,, N*sizeof(int)); cudaMemcpy(da,a,size,cudaMemcpyHostToDevice);
cudaMemcpy(db,b,size,cudaMemcpyHostToDevice); add<<<N,>>>(da,db,dc); //N blocks add<<<1,N>>>(da,db,dc); N threads
cudaMemcpy(c,dc,size,cudaMemcpyDeviceToHost ); for (int i=; i<;i++) std::cout<<c[i]<<std::endl; //_syncthreads(); //useless cudaDeviceSynchronize(); free(a); free(b); free(c); cudaFree(da); cudaFree(db); cudaFree(dc); return ; }
block+thread
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <iostream> /*
#define N (2048*2048)
#define M 512 // THREADS_PER_BLOCK
…
add<<<N/M, M>>>(d_a, d_b, d_c);
N /M blocks used
M threads / block
*/ const int N=*;
const int M=;
__global__ void add(int *a, int *b,int *c,int n)
{
int index=threadIdx.x+blockIdx.x*blockDim.x;
c[index]=a[index]+b[index];
if (index<n)
c[index]=a[index]+b[index];
//c[threadIdx.x]=a[threadIdx.x]+b[threadIdx.x];
}
int main(void)
{ // H has storage for 4 integers
int *a,*b,*c;
int *da,*db,*dc;
int size=N*sizeof(int); //scalar; cudaMalloc((void**)&da,size);
cudaMalloc((void**)&db,size);
cudaMalloc((void**)&dc,size); a=(int *) malloc(size);
memset(a,,N*sizeof(int));//rand_ints(a,N); a[]=;
a[]=;
b=(int *) malloc(size); memset(b,, N*sizeof(int));// rand_ints(b,N);
b[]=;
b[]=; c=(int *) malloc(size); //rand_ints(c,N);
memset(c,, N*sizeof(int)); cudaMemcpy(da,a,size,cudaMemcpyHostToDevice);
cudaMemcpy(db,b,size,cudaMemcpyHostToDevice); add<<<(N+M-)/M,M>>>(da,db,dc,N);
cudaMemcpy(c,dc,size,cudaMemcpyDeviceToHost );
for (int i=; i<;i++)
std::cout<<c[i]<<std::endl; //_syncthreads(); //useless
cudaDeviceSynchronize(); free(a);
free(b);
free(c);
cudaFree(da);
cudaFree(db);
cudaFree(dc); return ; }
CUDA 例程的更多相关文章
- 【ARM-Linux开发】【CUDA开发】NVIDIA Jetson TX2 进阶:Nsight Eclipse Edition
嵌入式平台:NVIDIA Jetson TX2 嵌入式系统:Ubuntu16.04 虚拟机系统:Ubuntu14.04 一.NSight简介 Jetpack开发工具为人工智能提供了一整套软件架构,包括 ...
- Ubuntu16.04+GTX2070+Driver418.43+CUDA10.1+cuDNN7.6
最近需要用到一台服务器的GPU跑实验,其间 COLMAP 编译过程出错,提示 cuda 版本不支持,cmake虽然通过了,但其实没有找到支持的CUDA架构. cv@cv:~/mvs_project/c ...
- CUDA从入门到精通
http://blog.csdn.net/augusdi/article/details/12833235 CUDA从入门到精通(零):写在前面 在老板的要求下.本博主从2012年上高性能计算课程開始 ...
- cuda编程(一)
环境安装和例程运行 显卡主要有两家,ATI.NVIDIA,简称A卡和N卡.随着GPU计算能力的上升,采用GPU并行计算来加速的应用越来越多. Nvidia创立人之一,黄仁勋(Jen-Hsun Huan ...
- 显存充足,但是却出现CUDA error:out of memory错误
之前一开始以为是cuda和cudnn安装错误导致的,所以重装了,但是后来发现重装也出错了. 后来重装后的用了一会也出现了问题.确定其实是Tensorflow和pytorch冲突导致的,因为我发现当我同 ...
- pytorch官网上两个例程
caffe用起来太笨重了,最近转到pytorch,用起来实在不要太方便,上手也非常快,这里贴一下pytorch官网上的两个小例程,掌握一下它的用法: 例程一:利用nn 这个module构建网络,实现 ...
- CUDA从入门到精通 - Augusdi的专栏 - 博客频道 - CSDN.NET
http://blog.csdn.net/augusdi/article/details/12833235 CUDA从入门到精通 - Augusdi的专栏 - 博客频道 - CSDN.NET CUDA ...
- CUDA编程接口:异步并发执行的概念和API
1.主机和设备间异步执行 为了易于使用主机和设备间的异步执行,一些函数是异步的:在设备完全完成任务前,控制已经返回给主机线程了.它们是: 内核发射; 设备间数据拷贝函数; 主机和设备内拷贝小于64KB ...
- CUDA:Supercomputing for the Masses (用于大量数据的超级计算)-第八节
原文链接 第八节:利用CUDA函数库 Rob Farber 是西北太平洋国家实验室(Pacific Northwest National Laboratory)的高级科研人员.他在多个国家级的实验室进 ...
随机推荐
- [js]js设计模式-工厂模式
// 定义一个人 var p1 = { name: 'wxb', age: 22, writejs: function () { console.log(this.name + ' can sing. ...
- 解决.NET iis初次加载超级慢
禁止证书的验证过程:1.在下面aspnet.config文件中加入下面内容: 32位系统:C:\Windows\Microsoft.NET\Framework\v2.0.50727\aspne ...
- OpenStack-Neutron-VPNaaS-配置
配置openstack版本:Juno vpnaas配置的资料很少,官网目前参考的https://wiki.openstack.org/wiki/Neutron/VPNaaS/HowToInstall比 ...
- bzoj2880
打公式好麻烦 QAQ 为了节省时间去复习,原谅我引用一下别人的博客...http://blog.csdn.net/acdreamers/article/details/8542292 #include ...
- 腾讯云主机如何使用root账号登录,不能使用root登录怎么办
1.先用ubuntu账号登录,执行sudo passwd root 2.按要求输入密码,请牢记. 3.执行sudo vi /etc/ssh/sshd_config 4.找到PermitRootLogi ...
- 使用shiro框架,解决跳转页面出现404的问题
shiro框架是一个安全框架,在进行登录的时候,如果没有配置路径,它会跳到shiro的默认配置的路径“/”下面,所以总是会出现404的错误,因为它的路径是保存在session中 所以需要我们把sess ...
- iOS项目之获取WebView的高度
获取高度值的方法: - (void)webViewDidFinishLoad:(UIWebView *)webView { // 获取webView的高度 CGFloat webViewHeight ...
- mysql获取随机字符串和随机数的方法
在我们开发的过程中,我们可能会需要在表中随机生成一些数据以供我们进行相应的测试. 就像我之前发的“mysql创建存储过程向数据表中加入规定条数的数据” 那么我们应该怎样生成随机的字符串和随机数字呢? ...
- KVO的使用一
概述 KVO即Key-Value Observing,它允许一个对象被另一个对象在改变指定的属性值后进行通知.iOS中的应用场景很多,比如model的值发生变化,controller里对model进行 ...
- Python引用拷贝赋值
先安利一个网站,对学习编程很有帮助:http://www.pythontutor.com/ 可以逐行可视化执行代码,具体自行体验啦 这个网站也是我在看别人的博文时候找到的,也先贴上别人的理解吧,我觉得 ...