CUDA 例程
scalar add #include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <iostream>
__global__ void add(int *a, int *b,int *c)
{
c[blockIdx.x]=a[blockIdx.x]+b[blockIdx.x];
}
int main(void)
{ // H has storage for 4 integers
int a,b,c;
int *da,*db,*dc;
int size=*sizeof(int); //scalar;
cudaMalloc((void**)&da,size);
cudaMalloc((void**)&db,size);
cudaMalloc((void**)&dc,size); a=;
b=;
cudaMemcpy(da,&a,size,cudaMemcpyHostToDevice);
cudaMemcpy(db,&b,size,cudaMemcpyHostToDevice); add<<<,>>>(da,db,dc);
cudaMemcpy(&c,dc,size,cudaMemcpyDeviceToHost );
std::cout<<c<<std::endl; cudaFree(da);
cudaFree(db);
cudaFree(dc); std::cout<<"hell";
thrust::host_vector<int> H();
// initialize individual elements
H[] = ; H[] = ; H[] = ; H[] = ;
// H.size() returns the size of vector H
std::cout << "H has size " << H.size() << std::endl;
// print contents of H
for(int i = ; i < H.size(); i++) std::cout << "H[" << i << "] = " << H[i] << std::endl;
// resize H
H.resize();
std::cout << "H now has size " << H.size() << std::endl;
// Copy host_vector H to device_vector D
thrust::device_vector<int> D = H;
// elements of D can be modified
D[] = ; D[] = ; // print contents of D
for(int i = ; i < D.size(); i++) std::cout << "D[" << i << "] = " << D[i] << std::endl;
// H and D are automatically deleted when the function returns
return ; }
block or thread #include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <iostream> const int N=;
__global__ void add(int *a, int *b,int *c)
{
c[blockIdx.x]=a[blockIdx.x]+b[blockIdx.x]; //c[threadIdx.x]=a[threadIdx.x]+b[threadIdx.x];
}
int main(void)
{ // H has storage for 4 integers
int *a,*b,*c;
int *da,*db,*dc;
int size=N*sizeof(int); //scalar; cudaMalloc((void**)&da,size);
cudaMalloc((void**)&db,size);
cudaMalloc((void**)&dc,size); a=(int *) malloc(size);
memset(a,,N*sizeof(int));//rand_ints(a,N); a[]=;
a[]=;
b=(int *) malloc(size); memset(b,, N*sizeof(int));// rand_ints(b,N);
b[]=;
b[]=; c=(int *) malloc(size); //rand_ints(c,N);
memset(c,, N*sizeof(int)); cudaMemcpy(da,a,size,cudaMemcpyHostToDevice);
cudaMemcpy(db,b,size,cudaMemcpyHostToDevice); add<<<N,>>>(da,db,dc); //N blocks add<<<1,N>>>(da,db,dc); N threads
cudaMemcpy(c,dc,size,cudaMemcpyDeviceToHost ); for (int i=; i<;i++) std::cout<<c[i]<<std::endl; //_syncthreads(); //useless cudaDeviceSynchronize(); free(a); free(b); free(c); cudaFree(da); cudaFree(db); cudaFree(dc); return ; }
block+thread
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <iostream> /*
#define N (2048*2048)
#define M 512 // THREADS_PER_BLOCK
…
add<<<N/M, M>>>(d_a, d_b, d_c);
N /M blocks used
M threads / block
*/ const int N=*;
const int M=;
__global__ void add(int *a, int *b,int *c,int n)
{
int index=threadIdx.x+blockIdx.x*blockDim.x;
c[index]=a[index]+b[index];
if (index<n)
c[index]=a[index]+b[index];
//c[threadIdx.x]=a[threadIdx.x]+b[threadIdx.x];
}
int main(void)
{ // H has storage for 4 integers
int *a,*b,*c;
int *da,*db,*dc;
int size=N*sizeof(int); //scalar; cudaMalloc((void**)&da,size);
cudaMalloc((void**)&db,size);
cudaMalloc((void**)&dc,size); a=(int *) malloc(size);
memset(a,,N*sizeof(int));//rand_ints(a,N); a[]=;
a[]=;
b=(int *) malloc(size); memset(b,, N*sizeof(int));// rand_ints(b,N);
b[]=;
b[]=; c=(int *) malloc(size); //rand_ints(c,N);
memset(c,, N*sizeof(int)); cudaMemcpy(da,a,size,cudaMemcpyHostToDevice);
cudaMemcpy(db,b,size,cudaMemcpyHostToDevice); add<<<(N+M-)/M,M>>>(da,db,dc,N);
cudaMemcpy(c,dc,size,cudaMemcpyDeviceToHost );
for (int i=; i<;i++)
std::cout<<c[i]<<std::endl; //_syncthreads(); //useless
cudaDeviceSynchronize(); free(a);
free(b);
free(c);
cudaFree(da);
cudaFree(db);
cudaFree(dc); return ; }
CUDA 例程的更多相关文章
- 【ARM-Linux开发】【CUDA开发】NVIDIA Jetson TX2 进阶:Nsight Eclipse Edition
嵌入式平台:NVIDIA Jetson TX2 嵌入式系统:Ubuntu16.04 虚拟机系统:Ubuntu14.04 一.NSight简介 Jetpack开发工具为人工智能提供了一整套软件架构,包括 ...
- Ubuntu16.04+GTX2070+Driver418.43+CUDA10.1+cuDNN7.6
最近需要用到一台服务器的GPU跑实验,其间 COLMAP 编译过程出错,提示 cuda 版本不支持,cmake虽然通过了,但其实没有找到支持的CUDA架构. cv@cv:~/mvs_project/c ...
- CUDA从入门到精通
http://blog.csdn.net/augusdi/article/details/12833235 CUDA从入门到精通(零):写在前面 在老板的要求下.本博主从2012年上高性能计算课程開始 ...
- cuda编程(一)
环境安装和例程运行 显卡主要有两家,ATI.NVIDIA,简称A卡和N卡.随着GPU计算能力的上升,采用GPU并行计算来加速的应用越来越多. Nvidia创立人之一,黄仁勋(Jen-Hsun Huan ...
- 显存充足,但是却出现CUDA error:out of memory错误
之前一开始以为是cuda和cudnn安装错误导致的,所以重装了,但是后来发现重装也出错了. 后来重装后的用了一会也出现了问题.确定其实是Tensorflow和pytorch冲突导致的,因为我发现当我同 ...
- pytorch官网上两个例程
caffe用起来太笨重了,最近转到pytorch,用起来实在不要太方便,上手也非常快,这里贴一下pytorch官网上的两个小例程,掌握一下它的用法: 例程一:利用nn 这个module构建网络,实现 ...
- CUDA从入门到精通 - Augusdi的专栏 - 博客频道 - CSDN.NET
http://blog.csdn.net/augusdi/article/details/12833235 CUDA从入门到精通 - Augusdi的专栏 - 博客频道 - CSDN.NET CUDA ...
- CUDA编程接口:异步并发执行的概念和API
1.主机和设备间异步执行 为了易于使用主机和设备间的异步执行,一些函数是异步的:在设备完全完成任务前,控制已经返回给主机线程了.它们是: 内核发射; 设备间数据拷贝函数; 主机和设备内拷贝小于64KB ...
- CUDA:Supercomputing for the Masses (用于大量数据的超级计算)-第八节
原文链接 第八节:利用CUDA函数库 Rob Farber 是西北太平洋国家实验室(Pacific Northwest National Laboratory)的高级科研人员.他在多个国家级的实验室进 ...
随机推荐
- VMWare安装CentOS 6.5图解
1.本安装示例所使用的虚拟机:vmware workstation 12 2.从VMWare创建虚拟机开始,打开VMWare. 操作系统:CentOS 6.5 64位 IP地址:192.168.1.2 ...
- 文件上传下下载(不包含断点续传) Excel,Word导入导出基础
1.文件上传下载(MVC应用) 视图:form表单,编码方式为multipart/form-data <body> <div> <form action="/D ...
- 11.c#类的成员初始化顺序
转自http://www.cnblogs.com/siceblue/archive/2009/01/15/1376430.html C#作为一种纯面向对象的话言,为它编写的整个代码里面到处都离不开对象 ...
- 框架——flask知识点回顾
1. flask--轻量级Web开发框架 2. Flask 没有默认使用的数据库,你可以选择 MySQL,也可以用 NoSQL 3. Web程序框架的意义: 用于搭建Web应用程序 免去不同Web应用 ...
- GreenDao 使用和数据库升级
1使用方法 一.添加依赖 在bulid.gradle文件下的dependencies下添加所需依赖 compile 'org.greenrobot:greendao:3.2.2' // add l ...
- tiny6410的启动参数
bootargs=root=/dev/mtdblock2 rootfstype=yaffs2 init=/linuxrc console=ttySAC0,115200 bootcmd=nand led ...
- fabric 更详尽的用法
项目发布和运维的工作相当机械,频率还蛮高,导致时间浪费在敲大量重复的命令上. 修复bug什么的,测试,提交版本库(2分钟),ssh到测试环境pull部署(2分钟),rsync到线上机器A,B,C,D, ...
- 深入浅出JAVA线程池使用原理1
前言: Java中的线程池是并发框架中运用最多的,几乎所有需要异步或并发执行任务的程序都可以使用线程池,线程池主要有三个好处: 1.降低资源消耗:可以重复使用已经创建的线程降低线程创建和销毁带来的消耗 ...
- Analysis of FCN
全卷积网络 FCN 详解 背景 CNN能够对图片进行分类,可是怎么样才能识别图片中特定部分的物体,在2015年之前还是一个世界难题.神经网络大神Jonathan Long发表了<Fully ...
- CSS 边框样式
CSS 边框样式 直线边框样式 <html> <body> <!-- border: 1px 边框像素为1.solid red 边框样式以及边框颜色 --> < ...