BZOJ.1312.[Neerc2006]Hard Life(分数规划 最大权闭合子图)
最大密度子图。
二分答案\(x\),转为求是否存在方案满足:\(边数-x*点数\geq 0\)。
选一条边就必须选两个点,所以可以转成最大权闭合子图。边有\(1\)的正权,点有\(x\)的负权。判断\(边数-最小割\)是否非负即可。
有一个结论是,任意两个密度子图,它们的密度差不超过\(\frac{1}{n^2}\)。
所以拿eps=1e-7或者更小做二分边界不对。。。
必须是\(while(l+1.0/n/n<=r)\)。
还要注意精度的问题。。
m=0要输出1。
//1300kb 236ms
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
#define eps 1e-8
const int N=2005,M=6005+205;
const double INF=1ll<<55;
int n,m,src,des,Ans,A[N],B[N],Enum,H[N],nxt[M],fr[M],to[M],lev[N],pre[N];
double cap[M];
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AE(int u,int v,double w)
{
to[++Enum]=v, fr[Enum]=u, nxt[Enum]=H[u], H[u]=Enum, cap[Enum]=w;
to[++Enum]=u, fr[Enum]=v, nxt[Enum]=H[v], H[v]=Enum, cap[Enum]=0;
}
bool BFS()
{
static int q[N];
for(int i=0; i<des; ++i) lev[i]=des+1;
int h=0,t=1; q[0]=des, lev[des]=0;
while(h<t)
{
int x=q[h++];
for(int i=H[x]; i; i=nxt[i])
if(cap[i^1]>=eps && lev[to[i]]==des+1)
lev[to[i]]=lev[x]+1, q[t++]=to[i];
}
return lev[src]<=des;
}
inline double Augment()
{
double mn=INF;
for(int i=des; i; i=fr[pre[i]])
mn=std::min(mn,cap[pre[i]]);
for(int i=des; i; i=fr[pre[i]])
cap[pre[i]]-=mn, cap[pre[i]^1]+=mn;
return mn;
}
double ISAP()
{
static int cur[N],num[N];
if(!BFS()) return 0;
for(int i=0; i<=des; ++i) cur[i]=H[i], ++num[lev[i]];
int x=0; double res=0;
while(lev[0]<=des)
{
if(x==des) x=0, res+=Augment();
bool can=0;
for(int i=cur[x]; i; i=nxt[i])
if(lev[to[i]]==lev[x]-1 && cap[i]>=eps)
{
can=1, cur[x]=i, pre[x=to[i]]=i;
break;
}
if(!can)
{
int mn=des;
for(int i=H[x]; i; i=nxt[i])
if(cap[i]>=eps) mn=std::min(mn,lev[to[i]]);
if(!--num[lev[x]]) break;
++num[lev[x]=mn+1], cur[x]=H[x];
if(x) x=fr[pre[x]];
}
}
return res;
}
bool Check(double x)
{
Enum=1, memset(H,0,des+1<<2);
for(int i=1; i<=m; ++i) AE(0,i+n,1), AE(i+n,A[i],INF), AE(i+n,B[i],INF);
for(int i=1; i<=n; ++i) AE(i,des,x);
return m-ISAP()>=eps;
}
void DFS(int x)
{
static bool vis[N];
vis[x]=1, Ans+=(x<=n);
for(int i=H[x]; i; i=nxt[i])
if(cap[i]>=eps && !vis[to[i]]) DFS(to[i]);
}
int main()
{
n=read(),m=read(),src=0,des=n+m+1;
if(!m) return puts("1"),0;
for(int i=1; i<=m; ++i) A[i]=read(),B[i]=read();
double l=0.49,r=m/2.0,mid,EPS=1.0/n/n;//l不能设0.5。虽然最优比率最小是0.5,但是因为神奇的浮点误差0.5做最优比率并不对(0.49999999403953才对)
while(l+EPS<r)
if(Check(mid=(l+r)*0.5)) l=mid;
else r=mid;
Check(l), DFS(src);
printf("%d\n",Ans-1);
return 0;
}
BZOJ.1312.[Neerc2006]Hard Life(分数规划 最大权闭合子图)的更多相关文章
- 2018.11.06 NOIP训练 最大获利(profit)(01分数规划+最大权闭合子图)
传送门 好题啊. ∑i<jpi,jK∗(200−K)>X\frac{\sum_{i<j}p_{i,j}}{K*(200-K)}>XK∗(200−K)∑i<jpi,j ...
- bzoj 1312: Hard Life 01分数规划+网络流
题目: Description 在一家公司中,人事部经理与业务部经理不和.一次,总经理要求人事部从公司的职员中挑选出一些来帮助业务部经理完成一项任务.人事部经理发现,在公司的所有职员中,有一些人相处得 ...
- bzoj 3232 01分数规划+最大权封闭子图判定
我们的目标是使v/c最小化,所以构造函数g(x)=v-x*c,那么 二分一个X,判断当时的v-x*c的值是多少,然后根据g(x)函数的 单调递减性来二分,判断,直到g(x)=0的时候当前的X就是答案. ...
- [BZOJ 1497][NOI 2006]最大获利(最大权闭合子图)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1497 分析: 这是在有向图中的问题,且边依赖于点,有向图中存在点.边之间的依赖关系可以 ...
- BZOJ.1497.[NOI2006]最大获利(最小割 最大权闭合子图Dinic)
题目链接 //裸最大权闭合子图... #include<cstdio> #include<cctype> #include<algorithm> #define g ...
- bzoj 1565 [NOI2009]植物大战僵尸【tarjan+最大权闭合子图】
一上来以为是裸的最大权闭合子图,上来就dinic -然后没过样例.不得不说样例还是非常良心的给了一个强连通分量,要不然就WA的生活不能自理了 然后注意到有一种特殊情况:每个植物向他保护的植物连边(包括 ...
- bzoj 3232 圈地游戏 —— 01分数规划+最小割建图(最大权闭合子图)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 心烦意乱的时候调这道题真是...越调越气,就这样过了一晚上... 今天再认真看看,找出 ...
- LibreOJ 2003. 「SDOI2017」新生舞会 基础01分数规划 最大权匹配
#2003. 「SDOI2017」新生舞会 内存限制:256 MiB时间限制:1500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 ...
- [SCOI2018]游泳池(计算几何+分数规划+最大权闭合子图)
题目链接 https://www.luogu.org/problemnew/show/U56187 注:题面参考了网上的其他博客,并非原题题面,因此数据范围可能有误.数据为原创数据. 题解 其实就是许 ...
随机推荐
- hdu3949 异或空间 + 求矩阵的主元
给定n个整数,将数分解成01序列,由这n个01序列构成矩阵,这n个数构成线性空间,这就是异或空间 将这个矩阵高斯消元,求出t个主元,那么由着t个主元构成的线性空间里总共有2^t个数 设这t个数分别是a ...
- axure—日期函数
日期函数 日期函数中实现倒计时的关键点:1)gettime()函数可以取到1970年1月1日的时间,我们用倒计时结束的时间减去当前时间就能得到倒计时需要循环显示的所有时间.2)此处的“d”是倒计时结束 ...
- jQuery之导航菜单(点击该父节点时子节点显示,同时子节点的同级隐藏,但是同级的父节点始终显示)
注:对于同一个对象不超过3个操作的,可直接写成一行,超 过3个操作的建议每行写一个操作.这样可读性较强,可提高代码的可读性和可维护性 核心代码: $(".has_children" ...
- Jmeter测试demo
复制代码,保存为.jmx文件 需要安装插件: JMeterPlugins-ExtrasLibs E:\软件\apache-jmeter-3.0\lib\ext <?xml version=&qu ...
- js 图片转换base64 base64转换为file对象
function getImgToBase64(url,callback){//将图片转换为Base64 var canvas = document.createElement('canvas'), ...
- 浅拷贝和深拷贝(谈谈java中的clone)
clone顾名思义就是复制, 在Java语言中, clone方法被对象调用,所以会复制对象.所谓的复制对象,首先要分配一个和源对象同样大小的空间,在这个空间中创建一个新的对象.那么在java语言中,有 ...
- 【C++ Primer | 03】字符串、向量和数组
博客链接: c++ 中 const_iterator 和 const vector<>::iterator的区别 const vector <int> ::iterator和v ...
- 用vi编辑文件
原文:https://www.ibm.com/developerworks/library/l-lpic1-103-8/index.html Overview In this article, lea ...
- [转] js对象监听实现
前言 随着前端交互复杂度的提升,各类框架如angular,react,vue等也层出不穷,这些框架一个比较重要的技术点就是数据绑定.数据的监听有较多的实现方案,本文将粗略的描述一番,并对其中一个兼容性 ...
- css3三角形冒泡泡图形制作
图一: 图二: <!DOCTYPE html> <html> <head> <title>css 三角形</title> <style ...