问题

已知某应力张量的分量为

\[\sigma_{11}=3,\quad\sigma_{12} = \sigma_{13} = 1, \quad \sigma_{22} = \sigma_{33} = 0, \quad\sigma_{23} = 2
\]

  • 1、全部主应力
  • 2、最大主应力对应的主方向
  • 3、求方向矢量为 $\boldsymbol{n} = \left(0, \dfrac{1}{\sqrt{2}}, \dfrac{1}{\sqrt{2}}\right)$ 的斜面上的正应力 $\sigma_n$ 和剪应力 $\tau_n$。
  • 应力张量

    已知应力张量有如下形式

    \[\left[
    \begin{array}{ccc}
    \sigma_{x} & \tau_{xy} & \tau_{xz}\\
    \tau_{yx} & \sigma_{y} & \tau_{yz}\\
    \tau_{zx} & \tau_{zy} & \sigma_{z}
    \end{array}
    \right]
    =
    \left[
    \begin{array}{ccc}
    3 & 1 & 1\\
    1 & 0 & 2\\
    1 & 2 & 0
    \end{array}
    \right]
    \]

    求解

    导入sympy模块

    from sympy import *
    init_printing(use_unicode=True)

    Matrix对象表示应力矩阵

    sigma = Matrix([[3, 1, 1], [1, 0, 2], [1, 2, 0]])
    sigma

    \[\left[\begin{matrix}3 & 1 & 1\\1 & 0 & 2\\1 & 2 & 0\end{matrix}\right]
    \]

    1、求全部主应力

    求特征值

    • 调用 Matrix 对象的 eigenvals 方法
    sigma.eigenvals()

    \[\left \{ -2 : 1, \quad 1 : 1, \quad 4 : 1\right \}
    \]

    • 冒号后的数字表示一重特征值

    求特征矢量

    • 调用 Matrix 对象的 eigenvects 方法
    sigma.eigenvects()

    \[\left [ \left ( -2, \quad 1, \quad \left [ \left[\begin{matrix}0\\-1\\1\end{matrix}\right]\right ]\right ), \quad \left ( 1, \quad 1, \quad \left [ \left[\begin{matrix}-1\\1\\1\end{matrix}\right]\right ]\right ), \quad \left ( 4, \quad 1, \quad \left [ \left[\begin{matrix}2\\1\\1\end{matrix}\right]\right ]\right )\right ]
    \]

    2、求最大主应力对应的主方向

    最大主应力

    \[\sigma_1 = 4
    \]

    最大主应力对应的主方向

    \[\dfrac{1}{\sqrt{6}}\left(2, 1, 1\right)
    \]

    3、求斜面上的正应力 \(\sigma_n\) 和剪应力 \(\tau_n\)

    方向矢量

    \[\boldsymbol{n} = \left(0, \dfrac{1}{\sqrt{2}}, \dfrac{1}{\sqrt{2}}\right)
    \]

    n = Matrix([[0], [1], [1]])/sqrt(2)
    n

    \[\left[\begin{matrix}0\\\frac{\sqrt{2}}{2}\\\frac{\sqrt{2}}{2}\end{matrix}\right]
    \]

    应力矢量 \(\boldsymbol{T} = \boldsymbol{\sigma}\cdot\boldsymbol{n}\)

    T = sigma*n
    T

    \[\left[\begin{matrix}\sqrt{2}\\\sqrt{2}\\\sqrt{2}\end{matrix}\right]
    \]

    正应力 \(\sigma_n = \boldsymbol{T}\cdot\boldsymbol{n}\)

    sigma_n = T.T*n
    sigma_n

    \[\left[\begin{matrix}2\end{matrix}\right]
    \]

    剪应力

    \[\tau_n = \sqrt{T^2 - \sigma_n^2}
    \]

    tau_n =sqrt(T.T*T - sigma_n**2)
    tau_n

    \[\left(\left[\begin{matrix}2\end{matrix}\right]\right)^{\frac{1}{2}}
    \]

    参考

    Python3之弹性力学——应力张量2的更多相关文章

    1. Python3之弹性力学——应力张量1

      题目 已知某点的应力张量为: \[ \left[ \begin{array}{ccc} \sigma_{x} &\tau_{xy} &\tau_{xz}\\ \tau_{yx} &am ...

    2. python3  threading初体验

      python3中thread模块已被废弃,不能在使用thread模块,为了兼容性,python3将thread命名为_thread.python3中我们可以使用threading进行代替. threa ...

    3. Python3中的字符串函数学习总结

      这篇文章主要介绍了Python3中的字符串函数学习总结,本文讲解了格式化类方法.查找 & 替换类方法.拆分 & 组合类方法等内容,需要的朋友可以参考下. Sequence Types ...

    4. Mac-OSX的Python3.5虚拟环境下安装Opencv

      Mac-OSX的Python3.5虚拟环境下安装Opencv 1   关键词 关键词:Mac,OSX,Python3.5,Virtualenv,Opencv 2   概述 本文是一篇 环境搭建 的基础 ...

    5. Ubuntu部署python3.5的开发和运行环境

      Ubuntu部署python3.5的开发和运行环境 1 概述 由于最近项目全部由python2.x转向 python3.x(使用目前最新的 python3.5.1) ,之前的云主机的的默认python ...

    6. Python3 登陆网页并保持cookie

      网页登陆 网页登陆的原理都是,保持一个sessionid在cookie然后,根据sessionid在服务端找到cookie进行用户识别 python实现 由于python的简单以及丰富的类库是开发网络 ...

    7. 阿里云 SDK python3支持

      最近的一个项目需要操作阿里云的RDS,项目使用python3,让人惊讶的是官方的SDK竟然只支持python2 在阿里云现有SDK上改了改,文件的修改只涉及aliyun/api/base.py,详见h ...

    8. python3爬取1024图片

      这两年python特别火,火到博客园现在也是隔三差五的出现一些python的文章.各种开源软件.各种爬虫算法纷纷开路,作为互联网行业的IT狗自然看的我也是心痒痒,于是趁着这个雾霾横行的周末瞅了两眼,作 ...

    9. CentOS7中安装Python3.5

      1.下载 https://www.python.org/ftp/python/3.5.2/Python-3.5.2.tgz 2.上传到服务器 3. 安装相关依赖 yum install gcc ope ...

    随机推荐

    1. hdu4044 依赖背包变形 好题!

      由于不是求最大的可拦截的HP值,而是要将最小值最大化,那么就需要分配每个子树用的钱数以达到最小值最大化 第一步解决如何分配钱使得结点u的子树中用了j元钱后可以拦截的HP最大,这就是变形的分组(依赖)背 ...

    2. Centos7上vsftp脚本--> sh vsftp.sh 用户名 密码 --> sh vsftp.sh install

      #!/bin/bash #vsftp install . /etc/rc.d/init.d/functions users=/etc/vsftpd/vftpuser.txt login=/etc/vs ...

    3. spring cloud 使用ribbon简单处理客户端负载均衡

      假如我们的multiple服务的访问量剧增,用一个服务已经无法承载, 我们可以把Hello World服务做成一个集群. 很简单,我们只需要复制Hello world服务,同时将原来的端口8762修改 ...

    4. 集腋成裘-06-angularJS -angular_02

      1.0 选项卡 其中涉及到了三目运算符号; <!DOCTYPE html> <html ng-app="test"> <head> <me ...

    5. 2019-3-9,Servlet转跳链接详解

      //以下代码,可以传递request和response对象及其属性和变量至指定页面 request.getRequestDispatcher("showAttribut.jsp") ...

    6. map映射巧用 A-B Problems

      A-B problem Description 大家都非常熟悉 A+B Problem! 题目看多了也有审美疲劳,于是我舍弃了,改用 A-B problem! 题目是这样的:给出一串数以及一个数字 C ...

    7. 在 Windows服务器中启用/禁用SMBv1、SMBv2和SMBv3的方法

      本文介绍如何在 SMB 客户端和服务器组件上启用/禁用服务器消息块 SMBv1.SMBv2 和 SMBv3. 注意:建议由专业技术工程师完成以下操作. 禁用 SMBv2 和 SMBv3 的影响 我们建 ...

    8. 实战--Keepalived和LVS实现负载高可用

      显然,只有上一篇的操作,在WEB运维技术中,只能承担一半的角色. 想像一下,如何LVS本身倒了,肿么办?后端的NGINX再多,也只能是干着急,请求过来不呀! 所以,在本篇时,我们来实现LVS永不倒, ...

    9. [转]scp、sftp命令使用

      http://wangxuedong.com/index.php/archives/182/ 前言 有时候想上传文件到服务器或者从服务器下载一个文件到本地,但是服务器还没有配置ftp等环境,这时候可以 ...

    10. Nginx配置项优

      1.nginx运行工作进程个数,一般设置cpu的核数或者核心数x2 如果不了解cpu的核数,可以top命令之后按1看出来,也可以查看/proc/cpuinfo文件. [root@localhost~] ...