【Spark-core学习之九】 Spark案例
环境
虚拟机:VMware 10
Linux版本:CentOS-6.5-x86_64
客户端:Xshell4
FTP:Xftp4
jdk1.8
scala-2.10.4(依赖jdk1.8)
spark-1.6
一、PV & UV
PV是网站分析的一个术语,用以衡量网站用户访问的网页的数量。对于广告主,PV值可预期它可以带来多少广告收入。一般来说,PV与来访者的数量成正比,但是PV并不直接决定页面的真实来访者数量,如同一个来访者通过不断的刷新页面,也可以制造出非常高的PV。
1、什么是PV值
PV(page view)即页面浏览量或点击量,是衡量一个网站或网页用户访问量。具体的说,PV值就是所有访问者在24小时(0点到24点)内看了某个网站多少个页面或某个网页多少次。PV是指页面刷新的次数,每一次页面刷新,就算做一次PV流量。
度量方法就是从浏览器发出一个对网络服务器的请求(Request),网络服务器接到这个请求后,会将该请求对应的一个网页(Page)发送给浏览器,从而产生了一个PV。那么在这里只要是这个请求发送给了浏览器,无论这个页面是否完全打开(下载完成),那么都是应当计为1个PV。
package com.wjy.test; import java.util.List; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction; import scala.Tuple2; public class Pv { public static void main(String[] args) {
SparkConf conf = new SparkConf().setMaster("local").setAppName("PV");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<String> rdd = sc.textFile("./data/pvuvdata"); //根据PV定义 某个页面/网址的访问数量 将每一条记录根据网址解析出一条访问量
JavaPairRDD<String, Integer> ipwebrdd = rdd.mapToPair(new PairFunction<String, String, Integer>() {
private static final long serialVersionUID = 1L; @Override
public Tuple2<String, Integer> call(String line) throws Exception {
//7.213.213.208 吉林 2018-03-29 1522294977303 1920936170939152672 www.dangdang.com Login
String[] ss = line.split("\t");
return new Tuple2<String, Integer>(ss[],);
}
}); //累加页面访问量
JavaPairRDD<String, Integer> mapToPair = ipwebrdd.reduceByKey(new Function2<Integer, Integer, Integer>() {
private static final long serialVersionUID = 1L; @Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1+v2;
}
}).mapToPair(new PairFunction<Tuple2<String,Integer>, Integer, String>() {
private static final long serialVersionUID = 1L;
//换个 用于按照整数key排序
@Override
public Tuple2<Integer, String> call(Tuple2<String, Integer> tuple)
throws Exception {
return tuple.swap();
}
}).sortByKey(false).mapToPair(new PairFunction<Tuple2<Integer,String>, String, Integer>() {
private static final long serialVersionUID = 1L; @Override
public Tuple2<String, Integer> call(Tuple2<Integer, String> tuple)
throws Exception {
return tuple.swap();
}
}); List<Tuple2<String, Integer>> list = mapToPair.take();
for(Tuple2<String, Integer> t:list){
System.out.println(t);
} sc.stop();
} }
结果:
(www.baidu.com,)
(www.dangdang.com,)
(www.suning.com,)
(www.mi.com,)
(www.taobao.com,)
2、什么是UV值
UV(unique visitor)即独立访客数,指访问某个站点或点击某个网页的不同IP地址的人数。在同一天内,UV只记录第一次进入网站的具有独立IP的访问者,在同一天内再次访问该网站则不计数。UV提供了一定时间内不同观众数量的统计指标,而没有反应出网站的全面活动。
package com.wjy.test; import java.util.List; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction; import scala.Tuple2; public class Uv { /**
* 根据IP网址来确定唯一用户访问 然后排重 累计
* @param args
*/
public static void main(String[] args) {
SparkConf conf = new SparkConf().setMaster("local").setAppName("UV");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<String> rdd = sc.textFile("./data/pvuvdata"); JavaPairRDD<String, Integer> rdd2 = rdd.mapToPair(new PairFunction<String, String, Integer>() {
private static final long serialVersionUID = 1L; @Override
public Tuple2<String, Integer> call(String line) throws Exception {
String[] split = line.split("\t");
return new Tuple2<String, Integer>(split[0]+"_"+split[5],1);
}
})
.distinct()
.mapToPair(new PairFunction<Tuple2<String,Integer>, String, Integer>() {
private static final long serialVersionUID = 1L; @Override
public Tuple2<String, Integer> call(Tuple2<String, Integer> tuple)
throws Exception {
return new Tuple2<String, Integer>(tuple._1.split("_")[1],1);
}
}); //累加
JavaPairRDD<String, Integer> rdd3 = rdd2.reduceByKey(new Function2<Integer, Integer, Integer>() {
private static final long serialVersionUID = 1L; @Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1+v2;
}
})
.mapToPair(new PairFunction<Tuple2<String,Integer>, Integer, String>() {
private static final long serialVersionUID = 1L;
//反转 数值做KEY 用于排序
@Override
public Tuple2<Integer, String> call(Tuple2<String, Integer> tuple)
throws Exception {
return tuple.swap();
}
})
.sortByKey(false)//降序排序
.mapToPair(new PairFunction<Tuple2<Integer,String>, String, Integer>() {
private static final long serialVersionUID = 1L;
//排序之后 反转回来
@Override
public Tuple2<String, Integer> call(Tuple2<Integer, String> tuple)
throws Exception {
return tuple.swap();
}
}); //取前5个元素
List<Tuple2<String, Integer>> list = rdd3.take(5);
for(Tuple2<String, Integer> t:list){
System.out.println(t);
} sc.stop();
} }
结果:
(www.baidu.com,15830)
(www.suning.com,15764)
(www.mi.com,15740)
(www.jd.com,15682)
(www.dangdang.com,15641)
二、二次排序
对于两列以上的数据,要求对第一列排序之后,之后的列也要依次排序,思路就是:先对第一列进行排序,对于第一列数值相同,再对第二列进行排序。
举例:
待排序数据:secondSort.txt
package com.wjy.test; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction; import scala.Tuple2; public class SecondSort{ public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local").setAppName("SecondSort");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<String> rdd = sc.textFile("./data/secondSort.txt"); //转成K-V格式
//PairFunction 入参1-rdd的一行记录 入参2 入参3是call的出参
JavaPairRDD<SecondSortKey, String> mapToPair = rdd.mapToPair(new PairFunction<String, SecondSortKey, String>() {
private static final long serialVersionUID = 1L;
@Override
public Tuple2<SecondSortKey, String> call(String line)
throws Exception
{
String[] sps = line.split(" ");
int first = Integer.valueOf(sps[0]);
int second = Integer.valueOf(sps[1]);
SecondSortKey ss = new SecondSortKey(first,second);
return new Tuple2<SecondSortKey, String>(ss,line);
}
}); //sortByKey 会使用key也就是SecondSortKey的compareTo方法
mapToPair.sortByKey(false).foreach(new VoidFunction<Tuple2<SecondSortKey,String>>() {
private static final long serialVersionUID = 1L; @Override
public void call(Tuple2<SecondSortKey, String> tuple) throws Exception {
System.out.println(tuple._2);
}
});
sc.stop();
} }
对于KEY自定义类型 实现comparable接口 实现comparTo方法
package com.wjy.test;
import java.io.Serializable;
public class SecondSortKey implements Serializable ,Comparable<SecondSortKey>{
private static final long serialVersionUID = 1L;
private int first;
private int second;
public SecondSortKey(int first,int second)
{
super();
this.first=first;
this.second=second;
}
public int getFirst() {
return first;
}
public void setFirst(int first) {
this.first = first;
}
public int getSecond() {
return second;
}
public void setSecond(int second) {
this.second = second;
}
@Override
public int compareTo(SecondSortKey o) {
//先比较第一个数值 如果相同再比较第二个值 否则直接返回第一个值的比较结果
if (getFirst()-o.getFirst() == 0)
{
return getSecond() - o.getSecond();
}
else
{
return getFirst()-o.getFirst();
}
}
}
排序结果:
8 654
8 123
6 5
5 432
5 121
5 2
4 123
3 98
3 54
3 1
1 4
三、分组取topN
对于多组数据,去每一组数据前N个数据,比如列出每个班级的前三名等等问题。
解决的思路:先分组,然后每一组排序,取前N个。
案例:有三个班级的分数清单scores.txt,取出每班前三名。
class1 100
class2 85
class3 70
class1 102
class2 65
class1 45
class2 85
class3 70
class1 16
class2 88
class1 95
class2 37
class3 98
class1 99
class2 23
groupByKey+排序算法:
package com.wjy.test; import java.util.Iterator; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction; import scala.Tuple2; public class TopNtest { public static void main(String[] args) {
SparkConf conf = new SparkConf().setMaster("local").setAppName("TopOs");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<String> rdd = sc.textFile("./data/scores.txt"); //转成K-V格式 方便下一步分组和排序
//PairFunction 入参1rdd的一行数据 入参2、3是call的出参元素
JavaPairRDD<String, Integer> mapToPair = rdd.mapToPair(new PairFunction<String, String, Integer>() {
private static final long serialVersionUID = 1L;
@Override
public Tuple2<String, Integer> call(String line) throws Exception {
String[] ss = line.split("\t");
return new Tuple2<String, Integer>(ss[0],Integer.valueOf(ss[1]));
}
}); //使用groupByKey 将相同班级的数据放在一个集合里
mapToPair.groupByKey().foreach(new VoidFunction<Tuple2<String,Iterable<Integer>>>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Tuple2<String, Iterable<Integer>> tuple) throws Exception {
String classname = tuple._1;
Iterator<Integer> it = tuple._2.iterator();
Integer[] top3 = new Integer[3];
while(it.hasNext())
{
Integer score = it.next();
//排序
for (int i = 0; i < top3.length; i++)
{
if(top3[i] == null)
{
top3[i] = score;
break;
}
else if(score > top3[i])
{
for (int j = 2; j > i; j--)
{
top3[j] = top3[j-1];
}
top3[i] = score;
break;
}
}
}
System.out.println("classname="+classname);
for (Integer i:top3)
{
System.out.println(i);
}
}
});
sc.stop();
} }
topN 结果:
classname=class3
98
70
70
classname=class1
102
100
99
classname=class2
88
85
85
【Spark-core学习之九】 Spark案例的更多相关文章
- 【Spark深入学习-11】Spark基本概念和运行模式
----本节内容------- 1.大数据基础 1.1大数据平台基本框架 1.2学习大数据的基础 1.3学习Spark的Hadoop基础 2.Hadoop生态基本介绍 2.1Hadoop生态组件介绍 ...
- 【spark core学习---算子总结(java版本) (第1部分)】
map算子 flatMap算子 mapParitions算子 filter算子 mapParttionsWithIndex算子 sample算子 distinct算子 groupByKey算子 red ...
- 【Spark深入学习 -12】Spark程序设计与企业级应用案例02
----本节内容------- 1.遗留问题答疑 1.1 典型问题解答 1.2 知识点回顾 2.Spark编程基础 2.1 Spark开发四部曲 2.2 RDD典型实例 2.3 非RDD典型实例 3. ...
- 【Spark深入学习 -14】Spark应用经验与程序调优
----本节内容------- 1.遗留问题解答 2.Spark调优初体验 2.1 利用WebUI分析程序瓶颈 2.2 设置合适的资源 2.3 调整任务的并发度 2.4 修改存储格式 3.Spark调 ...
- 【Spark深入学习 -13】Spark计算引擎剖析
----本节内容------- 1.遗留问题解答 2.Spark核心概念 2.1 RDD及RDD操作 2.2 Transformation和Action 2.3 Spark程序架构 2.4 Spark ...
- 【Spark 深入学习 01】 Spark是什么鬼?
经过一段时间的学习和测试,是时候给spark的学习经历做一个总结了,对于spark的了解相对晚了写.春节期间(预计是无大事),本博准备推出20篇左右spark系列原创文章(先把牛吹出去再说) ,尽量将 ...
- 【Spark 深入学习 -09】Spark生态组件及Master节点HA
----本节内容------- 1.Spark背景介绍 2.Spark是什么 3.Spark有什么 4.Spark部署 4.1.Spark部署的2方面 4.2.Spark编译 4.3.Spark St ...
- spark SQL学习(认识spark SQL)
spark SQL初步认识 spark SQL是spark的一个模块,主要用于进行结构化数据的处理.它提供的最核心的编程抽象就是DataFrame. DataFrame:它可以根据很多源进行构建,包括 ...
- 【spark 深入学习 03】Spark RDD的蛮荒世界
RDD真的是一个很晦涩的词汇,他就是伯克利大学的博士们在论文中提出的一个概念,很抽象,很难懂:但是这是spark的核心概念,因此有必要spark rdd的知识点,用最简单.浅显易懂的词汇描述.不想用学 ...
- 【Spark深入学习 -15】Spark Streaming前奏-Kafka初体验
----本节内容------- 1.Kafka基础概念 1.1 出世背景 1.2 基本原理 1.2.1.前置知识 1.2.2.架构和原理 1.2.3.基本概念 1.2.4.kafka特点 2.Kafk ...
随机推荐
- javap的使用
今天听的分享里在介绍String时,提到了javap,学习了好久的java,但是好像从来没有了解过这个工具. javap是JDK提供的一个命令行工具,javap能对给定的class文件提供的字节代码进 ...
- linux下用php将doc、ppt转图片
解决方案分成两步: (1)调用unoconv命令将 doc.ppt 转 pdf (2)使用 imagemagick将 pdf 转图片 步骤 1.安装unoconv sudo apt-get insta ...
- webpack模块化原理
https://segmentfault.com/a/1190000010349749 webpack模块化原理-commonjs https://segmentfault.com/a/119 ...
- vue+node+mongodb前后端分离博客系统
感悟 历时两个多月,终于利用工作之余完成了这个项目的1.0版本,为什么要写这个项目?其实基于vuejs+nodejs构建的开源博客系统有很多,但是大多数不支持服务端渲染,也不支持动态标题,只是做到了前 ...
- Android学习:自定义组件,DrawView
布局文件: <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:to ...
- MySQL 5.7新特性之generated column
MySQL 5.7引入了generated column,这篇文章简单地介绍了generated column的使用方法和注意事项,为读者了解MySQL 5.7提供一个快速的.完整的教程.这篇文章围绕 ...
- tomcat架构分析和源码解读
最近在看<深入分析java web技术内幕>,书中讲解了一部分tomcat的相关知识,我也去查看了一些源码,看了大神们写的代码,我才知道自己就像在做加减乘除一样,这是不行的.还有好多包和类 ...
- TS的一些小东西
首先介绍下泛型的三种方法,函数声明,函数表达式,箭头函数 function Interview2<T>(name:T):T{ return name } let mn=function&l ...
- js运用3
1. js的本质就是处理数据.数据来自于后台的数据库. 所以变量就起到一个临时存储数据的作用. ecmascript制定了js的数据类型. 数据类型有哪些? 1. 字符串 string 2. 数字 n ...
- java动态加载配置文件(申明:来源于网络)
java动态加载配置文件 地址:http://blog.csdn.net/longvs/article/details/9361449