1、测试数据下载

https://datamarket.com/data/set/22w6/portland-oregon-average-monthly-bus-ridership-100-january-1973-through-june-1982-n114#!ds=22w6&display=line

2、LSTM预测

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import datetime
from dateutil.relativedelta import relativedelta df = pd.read_csv("C:\\Users\\\Administrator\\Downloads\\portland-oregon-average-monthly-.csv",
index_col=0) df.index.name=None #将index的name取消
df.reset_index(inplace=True)
df.drop(df.index[114], inplace=True)
start = datetime.datetime.strptime("1973-01-01", "%Y-%m-%d") #把一个时间字符串解析为时间元组
date_list = [start + relativedelta(months=x) for x in range(0,114)] #从1973-01-01开始逐月增加组成list
df['index'] =date_list
df.set_index(['index'], inplace=True)
df.index.name=None
df.columns= ['riders']
df['riders'] = df.riders.apply(lambda x: int(x)*100)
df.riders.plot(figsize=(12,8), title= 'Monthly Ridership', fontsize=14)
plt.show() data = df.iloc[:,0].tolist() def data_processing(raw_data, scale=True):
if scale == True:
return (raw_data-np.mean(raw_data))/np.std(raw_data)#标准化
else:
return (raw_data-np.min(raw_data))/(np.max(raw_data)-np.min(raw_data))#极差规格化
TIMESTEPS = 12 '''样本数据生成函数'''
def generate_data(seq):
X = []#初始化输入序列X
Y= []#初始化输出序列Y
'''生成连贯的时间序列类型样本集,每一个X内的一行对应指定步长的输入序列,Y内的每一行对应比X滞后一期的目标数值'''
for i in range(len(seq) - TIMESTEPS - 1):
X.append([seq[i:i + TIMESTEPS]])#从输入序列第一期出发,等步长连续不间断采样
Y.append([seq[i + TIMESTEPS]])#对应每个X序列的滞后一期序列值
return np.array(X, dtype=np.float32), np.array(Y, dtype=np.float32) '''对原数据进行尺度缩放'''
data = data_processing(data) '''将所有样本来作为训练样本'''
train_X, train_y = generate_data(data) '''将所有样本作为测试样本'''
test_X, test_y = generate_data(data) from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import LSTM model = Sequential()
model.add(LSTM(16, input_shape=(train_X.shape[1], train_X.shape[2])))
model.add(Dense(train_y.shape[1]))
model.compile(loss='mse', optimizer='adam', metrics=['accuracy'])
model.fit(train_X, train_y, epochs=1000, batch_size=len(train_X), verbose=2, shuffle=False) #scores = model.evaluate(train_X, train_y, verbose=0)
#print("Model Accuracy: %.2f%%" % (scores[1] * 100)) result = model.predict(train_X, verbose=0) '''自定义反标准化函数'''
def scale_inv(raw_data,scale=True):
data1 = df.iloc[:, 0].tolist()
if scale == True:
return raw_data*np.std(data1)+np.mean(data1)
else:
return raw_data*(np.max(data1)-np.min(data1))+np.min(data1) '''绘制反标准化之前的真实值与预测值对比图'''
plt.figure()
plt.plot(scale_inv(result), label='predict data')
plt.plot(scale_inv(test_y), label='true data')
plt.title('none-normalized')
plt.legend()
plt.show() def generate_predata(seq):
X = []#初始化输入序列X
X.append(seq)
return np.array(X, dtype=np.float32) datalist = data.tolist()
pre_result = []
for i in range(50):
pre_x = generate_predata(datalist[len(datalist) - TIMESTEPS:])
#pre_x = pre_x[np.newaxis,:,:]
pre_x = np.reshape(pre_x, (1, 1, TIMESTEPS))
pre_y = model.predict(pre_x)
pre_result.append(pre_y.tolist()[0])
datalist.append(pre_y.tolist()[0][0])
all = result.tolist()
all.extend(pre_result)
'''绘制反标准化之前的真实值与预测值对比图'''
plt.figure()
plt.plot(scale_inv(np.array(all)), label='predict data')
plt.plot(scale_inv(test_y), label='true data')
plt.title('none-normalized')
plt.legend()
plt.show()

3、运行效果

 

时间序列预测——Tensorflow.Keras.LSTM的更多相关文章

  1. Kesci: Keras 实现 LSTM——时间序列预测

    博主之前参与的一个科研项目是用 LSTM 结合 Attention 机制依据作物生长期内气象环境因素预测作物产量.本篇博客将介绍如何用 keras 深度学习的框架搭建 LSTM 模型对时间序列做预测. ...

  2. 使用tensorflow的lstm网络进行时间序列预测

    https://blog.csdn.net/flying_sfeng/article/details/78852816 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog. ...

  3. 基于 Keras 用 LSTM 网络做时间序列预测

    目录 基于 Keras 用 LSTM 网络做时间序列预测 问题描述 长短记忆网络 LSTM 网络回归 LSTM 网络回归结合窗口法 基于时间步的 LSTM 网络回归 在批量训练之间保持 LSTM 的记 ...

  4. (数据科学学习手札40)tensorflow实现LSTM时间序列预测

    一.简介 上一篇中我们较为详细地铺垫了关于RNN及其变种LSTM的一些基本知识,也提到了LSTM在时间序列预测上优越的性能,本篇就将对如何利用tensorflow,在实际时间序列预测任务中搭建模型来完 ...

  5. Python中利用LSTM模型进行时间序列预测分析

    时间序列模型 时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征.这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺 ...

  6. TensorFlow实现时间序列预测

    常常会碰到各种各样时间序列预测问题,如商场人流量的预测.商品价格的预测.股价的预测,等等.TensorFlow新引入了一个TensorFlow Time Series库(以下简称为TFTS),它可以帮 ...

  7. Pytorch循环神经网络LSTM时间序列预测风速

    #时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征.这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺序的,同样大 ...

  8. facebook开源的prophet时间序列预测工具---识别多种周期性、趋势性(线性,logistic)、节假日效应,以及部分异常值

    简单使用 代码如下 这是官网的quickstart的内容,csv文件也可以下到,这个入门以后后面调试加入其它参数就很简单了. import pandas as pd import numpy as n ...

  9. tensorflow keras导包混用

    tensoboard 导入:导入包注意 否者会报错 :keras FailedPreconditionError: Attempting to use uninitialized value trai ...

随机推荐

  1. badgeview

    https://github.com/AlexLiuSheng/BadgeView include: compile 'com.allenliu.badgeview:library:1.1.1'(ne ...

  2. rabbitmq消费端加入精确控频。

    控制频率之前用的是线程池的数量来控制,很难控制.因为做一键事情,做一万次,并不是每次消耗的时间都相同,所以很难推测出到底多少线程并发才刚好不超过指定的频率. 现在在框架中加入控频功能,即使开200线程 ...

  3. Excel导入工具类兼容xls和xlsx

    package com.bj58.finance.platform.operation.provider.util; import org.apache.log4j.Logger; import or ...

  4. PHP memcached memcache 扩展安装

    好久没配置环境今天安装PHP 开发环境, 项目比较老,一开始以为项目用的是memcache 装完后发现 项目用的是memcached 所以正好两个都装了. 碰到些坑希望能帮助到百度到这篇文章的伙伴 . ...

  5. ratio_to_report 分析函数求占比

    drop table test; create table test ( name varchar(20), kemu varchar(20), score number  ); insert int ...

  6. Visual Studio 2010 VS IDE 编辑界面出现绿色的点 去掉绿色的空格点

    Visual Studio  2010 VS IDE 编辑界面出现绿色的点 去掉绿色的空格点 Vs乱按一顿忽然出现一堆绿色的点,我去好难看,还不知道什么鬼,查了查其实就是个 每个点表示一个空格 让他显 ...

  7. C#Windows Service服务程序的安装/卸载、启动/停止 桌面客户端管理程序设计

    C#Windows Service服务程序的安装/卸载.启动/停止 桌面客户端管理程序设计 关于Windows Service程序的安装与卸载如果每次使用命令行操作,那简直要奔溃了,太麻烦而且还容易出 ...

  8. Tcp/IP 的四层模型

    维基:https://zh.wikipedia.org/wiki/TCP/IP%E5%8D%8F%E8%AE%AE%E6%97%8F 因特网协议组 LITA 因特网协议组 Link  网络接口层 以太 ...

  9. 二、JavaScript基础(2)

    BOM基础加强 1.浏览器对象BOM DOM Window DOM Navigator DOM Screen DOM History DOM Location 2.浏览器对象的使用 History H ...

  10. php 判断手机号 和 手机号中间四位以**** 代替

    代码: //自定义函数手机号隐藏中间四位 function get_phone($str){ $str=$str; $resstr=substr_replace($str,'****',3,4); r ...