洛谷P2257 YY的GCD
今日份是数论
大概是。。从小学奥数到渐渐毒瘤
那就简单列一下目录【大雾
同余 质数密度 唯一分解定理 互质
完全剩余系 简化剩余系 欧拉函数 逆元 斐蜀定理
阶(及其性质) 欧拉定理 费马小定理 原根 调和级数
欧拉函数推广到积性函数 完全积性函数
莫比乌斯函数 莫比乌斯反演
狄利克雷卷积 杜教筛 Lucas定理
回到这道题
题意:
给出n, m ∈ [1, 1e7] ,求有多少对(x, y)
满足x ∈ [1, n], y ∈ [1, m] 且 gcd(x, y) 为质数
字丑【痛心


附上代码
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = 1e7 + ; int prm[N], mu[N], ps;
bool ism[N];
long long res[N], g[N]; inline void calc(int n){
mu[] = ;
for(int i = ; i <= n; i++){
if(!ism[i]) {prm[++ps] = i; mu[i] = -;}
for(int j = ; j <= ps && prm[j] * i <= n; j++){
ism[prm[j] * i] = ;
if(!(i % prm[j])) break;
mu[prm[j] * i] = -mu[i];
}
}
for(int i = ; i <= ps; i++)
for(int j = ; j * prm[i] <= n; j++)
g[j * prm[i]] += mu[j];
for(int i = ; i <= n; i++)
res[i] = res[i - ] + (long long) g[i];
} int main(){
int T; scanf("%d", &T);
long long ans;
int n, m;
calc(1e7);
while(T--){
scanf("%d%d", &n, &m);
if(n > m) swap(n, m);
ans = ;
int i = , j;
while(i <= n){
j = min(n / (n / i), m / (m / i));
ans += (long long)(n / i) * (m / i) * (res[j] - res[i - ]);
i = j + ;
}
printf("%lld\n", ans);
}
return ;
}
洛谷P2257 YY的GCD的更多相关文章
- 洛谷 P2257 YY的GCD
洛谷 P2257 YY的GCD \(solution:\) 这道题完全跟[POI2007]ZAP-Queries (莫比乌斯反演+整除分块) 用的一个套路. 我们可以列出答案就是要我们求: \(ans ...
- 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块
https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...
- 洛谷 P2257 YY的GCD 题解
原题链接 庆祝: 数论紫题 \(T4\) 达成! 莫比乌斯 \(T1\) 达成! yy 真是个 神犇 前记 之前我觉得: 推式子,直接欧拉筛,筛出个 \(\phi\),然后乱推 \(\gcd\) 就行 ...
- 洛谷 P2257 - YY的GCD(莫比乌斯反演+整除分块)
题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. ...
- 洛谷P2257 YY的GCD 莫比乌斯反演
原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...
- 洛谷P2257 YY的GCD(莫比乌斯反演)
传送门 原来……莫比乌斯反演是这么用的啊……(虽然仍然不是很明白) 首先,题目所求如下$$\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=prim]$$ 我们设$f(d)$表示$g ...
- 解题:洛谷2257 YY的GCD
题面 初见莫比乌斯反演 有一个套路是关于GCD的反演经常设$f(d)=\sum_{gcd(i,j)==d},g(d)=\sum_{d|gcd(i,j)}$,然后推推推 $\sum\limits_{i= ...
- [洛谷2257]YY的GCD 题解
整理题目转化为数学语言 题目要我们求: \[\sum_{i=1}^n\sum_{i=1}^m[gcd(i,j)=p]\] 其中 \[p\in\text{质数集合}\] 这样表示显然不是很好,所以我们需 ...
- 洛谷 2257 - YY的GCD
莫比乌斯反演半模板题 很容易可以得到 \[Ans = \sum\limits_{p \in prime} \sum\limits_{d = 1}^{\min (\left\lfloor\frac{a} ...
随机推荐
- BZOJ3451 Normal 期望、点分治、NTT
BZOJCH传送门 题目大意:给出一棵树,求对其进行随机点分治的复杂度期望 可以知道一个点的贡献就是其点分树上的深度,也就是这个点在点分树上的祖先数量+1. 根据期望的线性性,考虑一个点对\((x,y ...
- (转)Putty server refused our key的三种原因和解决方法
原文 上一篇博文介绍了使用Putty免密码登录,我后面试了另一台虚拟机,结果putty显示错误server refused our key(在linux下则表现为仍需要输入密码),搜索了下,很多人都遇 ...
- [linux]查询多个 trace 文件中,包含特定内容的文件
例如 目录是 /home/oracle/abc/trace 命令如下:oracle@node1 trace]$ find ./ -name "*.trc" | xargs grep ...
- JVM规范系列第3章:为Java虚拟机编译
Oracle 的 JDK 包括两部分内容:一部分是将 Java 源代码编译成 Java 虚拟机的指令集的编译器,另一部分是用于Java 虚拟机的运行时环境. 第一部分应该说的是 Javac 这个前置编 ...
- 项目开发之package.json
Name 必须字段. 提示: 不要在name中包含js, node字样: 这个名字不能以点号或下划线开头: 这个名字不能包含有大写字母: 这个名字可能在require()方法中被调用,所以应该尽可能短 ...
- 置换群 Burnside引理 Pólya定理(Polya)
置换群 设\(N\)表示组合方案集合.如用两种颜色染四个格子,则\(N=\{\{0,0,0,0\},\{0,0,0,1\},\{0,0,1,0\},...,\{1,1,1,1\}\}\),\(|N|= ...
- 个人博客作业_week7
心得 在为期将近一个月的团队编程中,给我感受最深的是敏捷开发和团队中队员之间的互补. 在最初的软件开发中,由于以前没有这方面的经验,所以并没有很大的进展.在慢慢过度中,我们找到了自己的节奏感,大家各自 ...
- WEEK 7:团队项目的感想
经过了几个星期的团队协作,我们的“爬虫”有了很大的完善,我作为团队中的主DEV,在这个过程中一边工作一边阅读,也有了不少的收获. Brooks的<没有银弹>告诉我们,在软件领域,没有什么绝 ...
- 【实践报告】Linux实践三
Linux实践——程序破解 一.掌握NOP.JNE.JE.JMP.CMP汇编指令的机器码 NOP:NOP指令即“空指令”.执行到NOP指令时,CPU什么也不做,仅仅当做一个指令执行过去并继续执行NOP ...
- Linux内核分析——第三章 进程管理
第三章 进程管理 3.1 进程 1.进程就是处于执行期的程序:进程就是正在执行的程序代码的实时结果:进程是处于执行期的程序以及相关的资源的总称:进程包括代码段和其他资源. 线程:是在进程中活动的对象. ...