BZOJ 4754 [JSOI2016]独特的树叶 | 树哈希判同构
这道题是一道判断无根树同构的模板题,判断同构主要的思路就是哈希。
一遇到哈希题,一百个人能有一百零一种哈希方式,这篇题解随便选用了一种——类似杨弋《Hash在信息学竞赛中的一类应用》中的这种,可能不是最简洁好写的,但是能用。
我的哈希规则:子树\(u\)的哈希值由它的每一个子树\(v_i\)的哈希值得来,首先将所有\(f(v)\)排个序(防止顺序不同造成影响),然后\(f(u) = size(u) * \sum_i f(v_i)W^{i - 1} \bmod P\),\(W\)是事先选取的一个位权,\(P\)是模数,\(size(u)\)是子树\(u\)的大小。
这样DFS一遍可求出以\(1\)号节点为根时,所有子树的哈希值\(f(u)\)。
但是这是无根树,我们想求出以任意节点为根时整棵树的哈希值。
设\(fa_u\)为以\(1\)为根时\(u\)的父亲,则上面的\(f(u)\)也是以\(fa_u\)为根时子树\(u\)的哈希值。
再求一个\(g(u)\)表示以\(u\)为根时子树\(fa_u\)的哈希值。这个\(g(u)\)怎么求呢?再DFS一遍,对于每个节点,\(g(u)\)由\(g(fa_u)\)以及\(u\)的每个兄弟\(v_i\)的\(f(v_i)\)得来。但是直接暴力枚举的话在菊花图上是\(O(n^2)\)的,那怎么办呢?
对于每个节点\(u\)维护一个数组,存储它所有儿子的哈希值\(f(v)\),如果有父亲,则\(g(u)\)也在里面,把这个数组排好序,求出每个前缀的哈希值和每个后缀的哈希值。这时,以\(u\)为根时整棵树的哈希值就是整个数组的哈希值(再乘上子树大小\(n\))。
此时求每个儿子\(v\)的\(g(v)\),就是从那个数组中间去掉\(f(v)\)后的哈希值,二分查找后把前缀哈希值和后缀哈希值拼起来就可以得到。记得乘上\(v\)为根时\(u\)的\(size\)即\(n - size(v)\)。
这样就求出以每个节点为根的哈希值了。
把A的所有哈希值存到一个set里,然后枚举B的每个度为1的点\(u\),求出以\(u\)为根它的唯一子树\(v\)的哈希值,如果set里有这个值,\(u\)就是所求的点之一。
代码比较丑,见谅 ><
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <vector>
#include <set>
#define space putchar(' ')
#define enter putchar('\n')
typedef long long ll;
using namespace std;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
}
const int N = 100005, W = 1000000021, P = 999999137;
int n, m, fa[N], f[N], g[N], pw[N], Sze[N], deg[N], ans = P;
int ecnt, adj[N], nxt[2*N], go[2*N];
vector <int> son[N], sl[N], sr[N];
set <int> vis;
bool isB;
void add(int u, int v){
if(isB) deg[u]++;
go[++ecnt] = v;
nxt[ecnt] = adj[u];
adj[u] = ecnt;
}
int dfs1(int u, int pre){
Sze[u] = 1;
fa[u] = pre;
son[u].clear();
for(int e = adj[u], v; e; e = nxt[e])
if((v = go[e]) != pre){
son[u].push_back(dfs1(v, u));
Sze[u] += Sze[v];
}
if(son[u].empty()) return f[u] = 1;
sort(son[u].begin(), son[u].end());
ll ret = 0;
for(int i = 0; i < (int)son[u].size(); i++)
ret = (ret * W + son[u][i]) % P;
return f[u] = Sze[u] * ret % P;
}
void dfs2(int u){
if(fa[u]){
son[u].push_back(g[u]);
sort(son[u].begin(), son[u].end());
}
int sze = son[u].size();
sl[u].resize(sze);
sl[u][0] = son[u][0];
for(int i = 1; i < sze; i++)
sl[u][i] = ((ll)sl[u][i - 1] * W + son[u][i]) % P;
sr[u].resize(sze);
sr[u][sze - 1] = son[u][sze - 1];
for(int i = sze - 2; i >= 0; i--)
sr[u][i] = (sr[u][i + 1] + (ll)son[u][i] * pw[sze - i - 1]) % P;
for(int e = adj[u], v; e; e = nxt[e])
if((v = go[e]) != fa[u]){
if(sze == 1){
g[v] = 1;
dfs2(v);
break;
}
int p = lower_bound(son[u].begin(), son[u].end(), f[v]) - son[u].begin();
g[v] = 0;
if(p + 1 < sze) g[v] = sr[u][p + 1];
if(p - 1 >= 0) g[v] = (g[v] + (ll)sl[u][p - 1] * pw[sze - 1 - p]) % P;
g[v] = (ll)g[v] * (n - Sze[v]) % P;
if(isB && deg[v] == 1 && vis.find(g[v]) != vis.end()) ans = min(ans, v);
dfs2(v);
}
if(!isB) vis.insert((ll)sl[u][sze - 1] * n % P);
}
int main(){
pw[0] = 1;
for(int i = 1; i < N; i++)
pw[i] = (ll)pw[i - 1] * W % P;
read(n);
for(int i = 1, u, v; i < n; i++)
read(u), read(v), add(u, v), add(v, u);
dfs1(1, 0);
dfs2(1);
ecnt = 0, isB = 1, n++;
memset(adj, 0, sizeof(adj));
for(int i = 1, u, v; i < n; i++)
read(u), read(v), add(u, v), add(v, u);
dfs1(1, 0);
if(deg[1] == 1 && vis.find(f[go[adj[1]]]) != vis.end())
ans = 1;
dfs2(1);
write(ans), enter;
return 0;
}
BZOJ 4754 [JSOI2016]独特的树叶 | 树哈希判同构的更多相关文章
- bzoj 4754: [Jsoi2016]独特的树叶
不得不说这是神题. %%% http://blog.csdn.net/samjia2000/article/details/51762811 #include <cstdio> #in ...
- bzoj4337: BJOI2015 树的同构 树哈希判同构
题目链接 bzoj4337: BJOI2015 树的同构 题解 树哈希的一种方法 对于每各节点的哈希值为hash[x] = hash[sonk[x]] * p[k]; p为素数表 代码 #includ ...
- BZOJ4754 JSOI2016独特的树叶(哈希)
判断两棵无根树是否同构只需要把重心提作根哈希即可.由于只添加了一个叶子,重心的位置几乎不发生偏移,所以直接把两棵树的重心提起来,逐层找哈希值不同且对应的两子树即可.被一个普及组子问题卡一年. #inc ...
- 【BZOJ4754】独特的树叶(哈希)
[BZOJ4754]独特的树叶(哈希) 题面 BZOJ 给定一个\(n\)个节点的树A和一个\(n+1\)个节点的树\(B\) 求\(B\)的一个编号最小的节点,使得删去这个节点后\(A,B\)同构 ...
- P4323 [JSOI2016]独特的树叶(树哈希)
传送门 树哈希?->这里 反正大概就是乱搞--的吧-- //minamoto #include<bits/stdc++.h> #define R register #define l ...
- BZOJ4754 & 洛谷4323 & LOJ2072:[JSOI2016]独特的树叶——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4754 https://www.luogu.org/problemnew/show/P4323 ht ...
- bzoj4754[JSOI2016]独特的树叶
这个题....别人写得怎么都....那么短啊? 我怎么....WA了好几次啊....怎么去loj扒了数据才调出来啊? 这个算法...怎么我还是不知道对不对啊 怎么回事啊怎么回事啊怎么回事啊? 请无视上 ...
- Luogu 4323 [JSOI2016]独特的树叶
新技能get 树哈希,考虑到两棵树相同的条件,把每一个结点的哈希值和树的siz写进哈希值里去. 做出A树每一个结点为根时的树的哈希值丢进set中,然后暴力枚举B树中度数为1的点,求出删掉这个点之后的哈 ...
- [JSOI2016]独特的树叶
https://zybuluo.com/ysner/note/1177340 题面 有一颗大小为\(n\)的树\(A\),现加上一个节点并打乱编号,形成树\(B\),询问加上的节点最后编号是多少? \ ...
随机推荐
- sessionStorage和localStorage的区别
JS的本地保存localStorage.sessionStorage用法总结 localStorage.sessionStorage是Html5的特性,IE7以下浏览器不支持 为什么要掌握localS ...
- 验证码处理类:UnCodebase.cs + BauDuAi 读取验证码的值(并非好的解决方案)
主要功能:变灰,去噪,等提高清晰度等 代码类博客,无需多说,如下: public class UnCodebase { public Bitmap bmpobj; public UnCodebase( ...
- 【JVM.2】垃圾收集器与内存分配策略
垃圾收集器需要完成的3件事情: 哪些内存需要回收? 什么时候回收? 如何回收? 在前一节中介绍了java内存运行时区域的各个部分,其中程序计数器.虚拟机栈.本地方法栈3个区域随线程而生,随线程而灭:栈 ...
- 【变态需求】bootstrapTable列排序-选择正序倒序不排序
产品经理:那个table排序能不能点击后弹个选项选择正序倒序不排序? -- 那个是bootstrapTable的插件!不支持!改不了!! 注意:数据上假的,效果看http请求参数进行脑补 这是boot ...
- rsync同步时,删除目标目录比源目录多余文件的方法(--delete)
在日常运维工作中,我们经常用到rsync这个同步神器.有时在同步两个目录时,会要求删除目标目录中比源目录多出的文件,这种情况下,就可用到rsync的--delete参数来实现这个需求了. 实例说明:在 ...
- SQL多表查询总结
前言 连接查询包括合并.内连接.外连接和交叉连接,如果涉及多表查询,了解这些连接的特点很重要.只有真正了解它们之间的区别,才能正确使用. 一.Union UNION 操作符用于合并两个或多个 SELE ...
- Python_命名空间和作用域_25
# 函数进阶 a = def func(): print(a) func() # 命名空间和作用域 # print() # input() # list # #命名空间 有三种 #内置命名空间 —— ...
- 修改sga_max_size大小后重启数据库报 ORA-00851
http://blog.itpub.net/30150152/viewspace-1449898/
- 软件工程驻足篇章:第十七周和BugPhobia团队漫长的道别
0x01 :序言 I am a slow walker, but I never walk backwards. 成长于被爱,学着爱人 成长的故事 也是年少的星期六结束的故事 就仿佛我和BugPhob ...
- 关于QQ的NABCD模型
关于QQ的NABCD模型 N--Need 随着电脑的普及,人们在网络上进行交流的时间越来越多,由于现有的交流工具还不是那么的完善,还不能够完全满足人们在交流时的需求.因此为了满足人们更多的需求,我们设 ...