设f[i]是第i天能获得的最大钱数,那么

f[i]=max{在第j天用f[j]的钱买,然后在第i天卖得到的钱,f[i-1]}

然后解一解方程什么的,设$x[j]=\frac{F[j]}{A[j]*Rate[j]+B[j]}$,$y[j]=Rate[j]*x[j]$的话,就能得到$f[i]=max\{y[j]*A[i]+x[j]*B[i],f[i-1]\}$

然后再推一波斜率优化的式子,就可以得到,当j1比j2优时,$\frac{y[j1]-y[j2]}{x[j1]-x[j2]}<-\frac{B[i]}{A[i]}$

然而$-\frac{B[i]}{A[i]}$这玩意并不单调,所以需要用splay或者cdq分治维护一个斜率递减的凸包,来查询满足上式的斜率最大的那个点。

然而懒得写splay了,所以用cdq分治来做(wa了几发以后才发现还不如去写splay呢写splay就不只是wa了)

我们来分治对所有点的询问。当然需要按照i从小到大来做。

然后在做一个区间的时候,我是想用它的左子区间(保证这些的值已经求完了)去更新右子区间的值。

也就是说,需要先做左子区间,然后做当前区间,最后再做右子区间(原理和寻找宝藏是一样的)

做的时候,左边按x值排序,右边按$-\frac{B[i]}{A[i]}$排序,然后给左半边用栈维护一个凸包,再用右半边的去扫,更新结果就行了。

(别忘了f[i]可以等于f[i-1],具体做法是在l=r的时候更新一下)

(常数好像写得很大..不管了.....)

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<set>
#include<ctime>
#define LL long long
using namespace std;
const int maxn=; LL rd(){
LL x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} int N,stk[maxn],arr[maxn],tmp[maxn];
double f[maxn],A[maxn],B[maxn],R[maxn]; inline double gety(int i){return R[i]*f[i]/(A[i]*R[i]+B[i]);}
inline double getx(int i){return f[i]/(A[i]*R[i]+B[i]);}
inline double gett(int i){return -B[i]/A[i];}
inline double getk(int i,int j){
double dx=getx(i)-getx(j);if(fabs(dx)<=1e-) dx=1e-;
return (gety(i)-gety(j))/dx;
}
inline bool cmpl(int a,int b){return getx(a)<getx(b);}
inline bool cmpr(int a,int b){return gett(a)<gett(b);} void cdq(int l,int r){
if(l>=r){f[arr[l]]=max(f[arr[l]],f[arr[l]-]);return;}
int m=l+r>>,t=;
cdq(l,m);sort(arr+l,arr+m+,cmpl);
memcpy(tmp+m+,arr+m+,*(r-m));sort(arr+m+,arr+r+,cmpr);
for(int p=l;p<=m;p++){
while(t>=&&getk(stk[t],stk[t-])<getk(stk[t],arr[p])) t--;
stk[++t]=arr[p];
}for(int q=m+;q<=r;q++){
while(t>=&&getk(stk[t],stk[t-])<gett(arr[q])) t--;
int j=stk[t],i=arr[q];
f[i]=max(f[i],gety(j)*A[i]+getx(j)*B[i]);
}
memcpy(arr+m+,tmp+m+,*(r-m));cdq(m+,r);
} int main(){
//freopen("testdata.in","r",stdin);
//freopen(".out","w",stdout);
int i,j,k;
N=rd(),f[]=rd();
for(i=;i<=N;i++){
scanf("%lf%lf%lf",&A[i],&B[i],&R[i]);
arr[i]=i;
}cdq(,N);
double ans=;
for(i=;i<=N;i++){
ans=max(ans,f[i]);
}printf("%.3lf\n",ans);
return ;
}

bzoj1492/luogu4027 货币兑换 (斜率优化+cdq分治)的更多相关文章

  1. LUOGU P4027 [NOI2007]货币兑换 (斜率优化+CDQ分治)

    传送门 解题思路 题目里有两句提示一定要看清楚,要不全买要不全卖,所以dp方程就比较好列,f[i]=max(f[j]*rate[j]*a[i])/(rate[j]*a[j]+b[j])+(f[j]*b ...

  2. BZOJ_3963_[WF2011]MachineWorks_斜率优化+CDQ分治

    BZOJ_3963_[WF2011]MachineWorks_斜率优化+CDQ分治 Description 你是任意性复杂机器公司(Arbitrarily Complex Machines, ACM) ...

  3. [BZOJ1492][NOI2007]货币兑换Cash(斜率优化+CDQ分治)

    1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 5838  Solved: 2345[Submit][Sta ...

  4. 【BZOJ-1492】货币兑换Cash DP + 斜率优化 + CDQ分治

    1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 3396  Solved: 1434[Submit][Sta ...

  5. 【BZOJ1492】[NOI2007]货币兑换Cash 斜率优化+cdq分治

    [BZOJ10492][NOI2007]货币兑换Cash Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下简称B券).每 ...

  6. BZOJ.1492.[NOI2007]货币兑换(DP 斜率优化 CDQ分治/Splay)

    BZOJ 洛谷 如果某天能够赚钱,那么一定会在这天把手上的金券全卖掉.同样如果某天要买,一定会把所有钱花光. 那么令\(f_i\)表示到第\(i\)天所拥有的最多钱数(此时手上没有任何金券),可以选择 ...

  7. [Noi2014]购票 BZOJ3672 点分治+斜率优化+CDQ分治

    Description  今年夏天,NOI在SZ市迎来了她30周岁的生日.来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会.全国的城市构成了一棵以SZ市为根的有根树,每个城市与它的 ...

  8. 洛谷.4655.[CEOI2017]Building Bridges(DP 斜率优化 CDQ分治)

    LOJ 洛谷 \(f_i=s_{i-1}+h_i^2+\min\{f_j-s_j+h_j^2-2h_i2h_j\}\),显然可以斜率优化. \(f_i-s_{i-1}-h_i^2+2h_ih_j=f_ ...

  9. BZOJ3963 WF2011MachineWorks(动态规划+斜率优化+cdq分治)

    按卖出时间排序后,设f[i]为买下第i台机器后的当前最大收益,则显然有f[i]=max{f[j]+gj*(di-dj-1)+rj-pi},且若此值<0,应设为-inf以表示无法购买第i台机器. ...

随机推荐

  1. centos单机安装nginx、gitlab、nexus、mysql共存

    思路就是不同系统设不同端口号,通过nginx做反向代理绑定不同域名. nginx 安装 1.安装pcre软件包(使nginx支持http rewrite模块)yum install -y pcreyu ...

  2. 分布式监控系统Zabbix--完整安装记录 -添加web页面监控

    通过zabbix做web监控,不仅仅可以监控到站点的响应时间,还可以根据站点返回的状态码或响应时间做报警设置,比如说对某个url进行监控,当访问返回的状态码是非200状态时都报警(创建触发器即可).下 ...

  3. nginx日志格式字段

    Nginx日志主要分为两种:访问日志和错误日志.日志开关在Nginx配置文件(/etc/nginx/nginx.conf)中设置,两种日志都可以选择性关闭,默认都是打开的. 访问日志 访问日志主要记录 ...

  4. L2-027. 名人堂与代金券

    链接:名人堂与代金券 在比赛中这题只得了2分,赛后发现原来strcmp函数并不是只返回-1,0,1三种,而是返回正数负数0 但是在我的电脑上一般就是返回前三种,只是用后面的三种更稳妥点 都怪我基础不扎 ...

  5. Kruskal算法-HDU1863畅通工程

    链接 [http://acm.hdu.edu.cn/showproblem.php?pid=1863] 题意 Problem Description 省政府"畅通工程"的目标是使全 ...

  6. #科委外文文献发现系统——导出word模板1.0

    ps:该篇文档由实验室ljg提供. Crowdsourcing 一.             技术简介 Crowdsourcing, a modern business term coined in ...

  7. 《linux内核设计与实现》第四章

    调度程序负责决定哪个进程投入运行,何时运行以及运行多长时间.只有通过调度程序合理调度,系统资源才能最大限度发挥作用,多进程才会有并发执行的效果. 最大限度地利用处理器时间的原则是,只要有可以执行的进程 ...

  8. 20135337——Linux实践三:程序破解

    程序破解 查看 运行 反汇编,查看汇编码 对反汇编代码进行分析: 在main函数的汇编代码中可以看出程序在调用"scanf"函数请求输入之后,对 [esp+0x1c] 和 [esp ...

  9. SQL语句及5.7.2 mysql 用户管理

    一.用户的定义 1.1 用户名+主机域 此处为5.7.2版本的mysql当中password字段已改为authentication_string mysql> select user,host, ...

  10. Install Kernel 3.10 on CentOS 6.5

    http://bicofino.io/2014/10/25/install-kernel-3-dot-10-on-centos-6-dot-5/ https://gree2.github.io/lin ...