深度理解select、poll和epoll
在linux 没有实现epoll事件驱动机制之前,我们一般选择用select或者poll等IO多路复用的方法来实现并发服务程序。在大数据、高并发、集群等一些名词唱得火热之年代,select和poll的用武之地越来越有限,风头已经被epoll占尽。
select()和poll() IO多路复用模型
select的缺点:
- 单个进程能够监视的文件描述符的数量存在最大限制,通常是1024,当然可以更改数量,但由于select采用轮询的方式扫描文件描述符,文件描述符数量越多,性能越差;(在linux内核头文件中,有这样的定义:#define __FD_SETSIZE 1024)
- 内核 / 用户空间内存拷贝问题,select需要复制大量的句柄数据结构,产生巨大的开销;
- select返回的是含有整个句柄的数组,应用程序需要遍历整个数组才能发现哪些句柄发生了事件;
- select的触发方式是水平触发,应用程序如果没有完成对一个已经就绪的文件描述符进行IO操作,那么之后每次select调用还是会将这些文件描述符通知进程。
相比select模型,poll使用链表保存文件描述符,因此没有了监视文件数量的限制,但其他三个缺点依然存在。
拿select模型为例,假设我们的服务器需要支持100万的并发连接,则在__FD_SETSIZE 为1024的情况下,则我们至少需要开辟1k个进程才能实现100万的并发连接。除了进程间上下文切换的时间消耗外,从内核/用户空间大量的无脑内存拷贝、数组轮询等,是系统难以承受的。因此,基于select模型的服务器程序,要达到10万级别的并发访问,是一个很难完成的任务。
因此,该epoll上场了。
epoll IO多路复用模型实现机制
由于epoll的实现机制与select/poll机制完全不同,上面所说的 select的缺点在epoll上不复存在。
设想一下如下场景:有100万个客户端同时与一个服务器进程保持着TCP连接。而每一时刻,通常只有几百上千个TCP连接是活跃的(事实上大部分场景都是这种情况)。如何实现这样的高并发?
epoll的设计和实现与select完全不同。epoll通过在Linux内核中申请一个简易的文件系统(文件系统一般用什么数据结构实现?B+树)。把原先的select/poll调用分成了3个部分:
- 调用epoll_create()建立一个epoll对象(在epoll文件系统中为这个句柄对象分配资源)
- 调用epoll_ctl向epoll对象中添加这100万个连接的套接字
- 调用epoll_wait收集发生的事件的连接
如此一来,要实现上面说是的场景,只需要在进程启动时建立一个epoll对象,然后在需要的时候向这个epoll对象中添加或者删除连接。同时,epoll_wait的效率也非常高,因为调用epoll_wait时,并没有一股脑的向操作系统复制这100万个连接的句柄数据,内核也不需要去遍历全部的连接。
下面来看看Linux内核具体的epoll机制实现思路。
当某一进程调用epoll_create方法时,Linux内核会创建一个eventpoll结构体,这个结构体中有两个成员与epoll的使用方式密切相关。eventpoll结构体如下所示:
struct eventpoll{
    ....
    /*红黑树的根节点,这颗树中存储着所有添加到epoll中的需要监控的事件*/
    struct rb_root  rbr;
    /*双链表中则存放着将要通过epoll_wait返回给用户的满足条件的事件*/
    struct list_head rdlist;
    ....
};
每一个epoll对象都有一个独立的eventpoll结构体,用于存放通过epoll_ctl方法向epoll对象中添加进来的事件。这些事件都会挂载在红黑树中,如此,重复添加的事件就可以通过红黑树而高效的识别出来(红黑树的插入时间效率是lgn,其中n为树的高度)。
而所有添加到epoll中的事件都会与设备(网卡)驱动程序建立回调关系,也就是说,当相应的事件发生时会调用这个回调方法。这个回调方法在内核中叫ep_poll_callback,它会将发生的事件添加到rdlist双链表中。
在epoll中,对于每一个事件,都会建立一个epitem结构体,如下所示:
struct epitem{
    struct rb_node  rbn;//红黑树节点
    struct list_head    rdllink;//双向链表节点
    struct epoll_filefd  ffd;  //事件句柄信息
    struct eventpoll *ep;    //指向其所属的eventpoll对象
    struct epoll_event event; //期待发生的事件类型
}
当调用epoll_wait检查是否有事件发生时,只需要检查eventpoll对象中的rdlist双链表中是否有epitem元素即可。如果rdlist不为空,则把发生的事件复制到用户态,同时将事件数量返回给用户。

从上面的讲解可知:通过红黑树和双链表数据结构,并结合回调机制,造就了epoll的高效。
OK,讲解完了Epoll的机理,我们便能很容易掌握epoll的用法了。一句话描述就是:三步曲。
- epoll_create()系统调用。此调用返回一个句柄,之后所有的使用都依靠这个句柄来标识。
- epoll_ctl()系统调用。通过此调用向epoll对象中添加、删除、修改感兴趣的事件,返回0标识成功,返回-1表示失败。
- epoll_wait()系统调用。通过此调用收集收集在epoll监控中已经发生的事件。
最后,附上一个epoll编程实例。(作者为sparkliang)
//
// a simple echo server using epoll in linux
//
// 2009-11-05
// 2013-03-22:修改了几个问题,1是/n格式问题,2是去掉了原代码不小心加上的ET模式;
// 本来只是简单的示意程序,决定还是加上 recv/send时的buffer偏移
// by sparkling
//
#include <sys/socket.h>
#include <sys/epoll.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <errno.h>
#include <iostream>
using namespace std;
#define MAX_EVENTS 500
struct myevent_s
{
    int fd;
    void (*call_back)(int fd, int events, void *arg);
    int events;
    void *arg;
    int status; // 1: in epoll wait list, 0 not in
    char buff[128]; // recv data buffer
    int len, s_offset;
    long last_active; // last active time
};
// set event
void EventSet(myevent_s *ev, int fd, void (*call_back)(int, int, void*), void *arg)
{
    ev->fd = fd;
    ev->call_back = call_back;
    ev->events = 0;
    ev->arg = arg;
    ev->status = 0;
    bzero(ev->buff, sizeof(ev->buff));
    ev->s_offset = 0;
    ev->len = 0;
    ev->last_active = time(NULL);
}
// add/mod an event to epoll
void EventAdd(int epollFd, int events, myevent_s *ev)
{
    struct epoll_event epv = {0, {0}};
    int op;
    epv.data.ptr = ev;
    epv.events = ev->events = events;
    if(ev->status == 1){
        op = EPOLL_CTL_MOD;
    }
    else{
        op = EPOLL_CTL_ADD;
        ev->status = 1;
    }
    if(epoll_ctl(epollFd, op, ev->fd, &epv) < 0)
        printf("Event Add failed[fd=%d], evnets[%d]\n", ev->fd, events);
    else
        printf("Event Add OK[fd=%d], op=%d, evnets[%0X]\n", ev->fd, op, events);
}
// delete an event from epoll
void EventDel(int epollFd, myevent_s *ev)
{
    struct epoll_event epv = {0, {0}};
    if(ev->status != 1) return;
    epv.data.ptr = ev;
    ev->status = 0;
    epoll_ctl(epollFd, EPOLL_CTL_DEL, ev->fd, &epv);
}
int g_epollFd;
myevent_s g_Events[MAX_EVENTS+1]; // g_Events[MAX_EVENTS] is used by listen fd
void RecvData(int fd, int events, void *arg);
void SendData(int fd, int events, void *arg);
// accept new connections from clients
void AcceptConn(int fd, int events, void *arg)
{
    struct sockaddr_in sin;
    socklen_t len = sizeof(struct sockaddr_in);
    int nfd, i;
    // accept
    if((nfd = accept(fd, (struct sockaddr*)&sin, &len)) == -1)
    {
        if(errno != EAGAIN && errno != EINTR)
        {
        }
        printf("%s: accept, %d", __func__, errno);
        return;
    }
    do
    {
        for(i = 0; i < MAX_EVENTS; i++)
        {
            if(g_Events[i].status == 0)
            {
                break;
            }
        }
        if(i == MAX_EVENTS)
        {
            printf("%s:max connection limit[%d].", __func__, MAX_EVENTS);
            break;
        }
        // set nonblocking
        int iret = 0;
        if((iret = fcntl(nfd, F_SETFL, O_NONBLOCK)) < 0)
        {
            printf("%s: fcntl nonblocking failed:%d", __func__, iret);
            break;
        }
        // add a read event for receive data
        EventSet(&g_Events[i], nfd, RecvData, &g_Events[i]);
        EventAdd(g_epollFd, EPOLLIN, &g_Events[i]);
    }while(0);
    printf("new conn[%s:%d][time:%d], pos[%d]\n", inet_ntoa(sin.sin_addr),
            ntohs(sin.sin_port), g_Events[i].last_active, i);
}
// receive data
void RecvData(int fd, int events, void *arg)
{
    struct myevent_s *ev = (struct myevent_s*)arg;
    int len;
    // receive data
    len = recv(fd, ev->buff+ev->len, sizeof(ev->buff)-1-ev->len, 0);
    EventDel(g_epollFd, ev);
    if(len > 0)
    {
        ev->len += len;
        ev->buff[len] = '\0';
        printf("C[%d]:%s\n", fd, ev->buff);
        // change to send event
        EventSet(ev, fd, SendData, ev);
        EventAdd(g_epollFd, EPOLLOUT, ev);
    }
    else if(len == 0)
    {
        close(ev->fd);
        printf("[fd=%d] pos[%d], closed gracefully.\n", fd, ev-g_Events);
    }
    else
    {
        close(ev->fd);
        printf("recv[fd=%d] error[%d]:%s\n", fd, errno, strerror(errno));
    }
}
// send data
void SendData(int fd, int events, void *arg)
{
    struct myevent_s *ev = (struct myevent_s*)arg;
    int len;
    // send data
    len = send(fd, ev->buff + ev->s_offset, ev->len - ev->s_offset, 0);
    if(len > 0)
    {
        printf("send[fd=%d], [%d<->%d]%s\n", fd, len, ev->len, ev->buff);
        ev->s_offset += len;
        if(ev->s_offset == ev->len)
        {
            // change to receive event
            EventDel(g_epollFd, ev);
            EventSet(ev, fd, RecvData, ev);
            EventAdd(g_epollFd, EPOLLIN, ev);
        }
    }
    else
    {
        close(ev->fd);
        EventDel(g_epollFd, ev);
        printf("send[fd=%d] error[%d]\n", fd, errno);
    }
}
void InitListenSocket(int epollFd, short port)
{
    int listenFd = socket(AF_INET, SOCK_STREAM, 0);
    fcntl(listenFd, F_SETFL, O_NONBLOCK); // set non-blocking
    printf("server listen fd=%d\n", listenFd);
    EventSet(&g_Events[MAX_EVENTS], listenFd, AcceptConn, &g_Events[MAX_EVENTS]);
    // add listen socket
    EventAdd(epollFd, EPOLLIN, &g_Events[MAX_EVENTS]);
    // bind & listen
    sockaddr_in sin;
    bzero(&sin, sizeof(sin));
    sin.sin_family = AF_INET;
    sin.sin_addr.s_addr = INADDR_ANY;
    sin.sin_port = htons(port);
    bind(listenFd, (const sockaddr*)&sin, sizeof(sin));
    listen(listenFd, 5);
}
int main(int argc, char **argv)
{
    unsigned short port = 12345; // default port
    if(argc == 2){
        port = atoi(argv[1]);
    }
    // create epoll
    g_epollFd = epoll_create(MAX_EVENTS);
    if(g_epollFd <= 0) printf("create epoll failed.%d\n", g_epollFd);
    // create & bind listen socket, and add to epoll, set non-blocking
    InitListenSocket(g_epollFd, port);
    // event loop
    struct epoll_event events[MAX_EVENTS];
    printf("server running:port[%d]\n", port);
    int checkPos = 0;
    while(1){
        // a simple timeout check here, every time 100, better to use a mini-heap, and add timer event
        long now = time(NULL);
        for(int i = 0; i < 100; i++, checkPos++) // doesn't check listen fd
        {
            if(checkPos == MAX_EVENTS) checkPos = 0; // recycle
            if(g_Events[checkPos].status != 1) continue;
            long duration = now - g_Events[checkPos].last_active;
            if(duration >= 60) // 60s timeout
            {
                close(g_Events[checkPos].fd);
                printf("[fd=%d] timeout[%d--%d].\n", g_Events[checkPos].fd, g_Events[checkPos].last_active, now);
                EventDel(g_epollFd, &g_Events[checkPos]);
            }
        }
        // wait for events to happen
        int fds = epoll_wait(g_epollFd, events, MAX_EVENTS, 1000);
        if(fds < 0){
            printf("epoll_wait error, exit\n");
            break;
        }
        for(int i = 0; i < fds; i++){
            myevent_s *ev = (struct myevent_s*)events[i].data.ptr;
            if((events[i].events&EPOLLIN)&&(ev->events&EPOLLIN)) // read event
            {
                ev->call_back(ev->fd, events[i].events, ev->arg);
            }
            if((events[i].events&EPOLLOUT)&&(ev->events&EPOLLOUT)) // write event
            {
                ev->call_back(ev->fd, events[i].events, ev->arg);
            }
        }
    }
    // free resource
    return 0;
}   
深度理解select、poll和epoll的更多相关文章
- Linux下select, poll和epoll IO模型的详解
		http://blog.csdn.net/tianmohust/article/details/6677985 一).Epoll 介绍 Epoll 可是当前在 Linux 下开发大规模并发网络程序的热 ... 
- I/O复用中的 select poll 和 epoll
		I/O复用中的 select poll 和 epoll: 这里有一些不错的资料: I/O多路复用技术之select模型: http://blog.csdn.net/nk_test/article/de ... 
- (转)Linux下select, poll和epoll IO模型的详解
		Linux下select, poll和epoll IO模型的详解 原文:http://blog.csdn.net/tianmohust/article/details/6677985 一).Epoll ... 
- linux select poll and epoll
		这里以socket文件来阐述它们之间的区别,假设现在服务器端有100 000个连接,即已经创建了100 000个socket. 1 select和poll 在我们的线程中,我们会弄一个死循环,在循环里 ... 
- Select,poll,epoll复用
		Select,poll,epoll复用 1)select模块以列表的形式接受四个参数,分别是可读对象,可写对象,产生异常的对象,和超时设置.当监控符对象发生变化时,select会返回发生变化的对象列表 ... 
- 聊聊select, poll 和 epoll
		聊聊select, poll 和 epoll 假设项目上需要实现一个TCP的客户端和服务器从而进行跨机器的数据收发,我们很可能翻阅一些资料,然后写出如下的代码. 服务端 void func(int s ... 
- select poll和 epoll
		select .poll.epoll 都是多路io复用的机制,i/o多路复用就通过一种机制,可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知乡音的程序进行相应的读写操作.但s ... 
- 1 select,poll和epoll
		其实所有的I/O都是轮询的方法,只不过实现的层面不同罢了. 基本上select有3个缺点: 连接数受限 查找配对速度慢 数据由内核拷贝到用户态 poll改善了第一个缺点 epoll改了三个缺点. se ... 
- select poll和epoll
		select poll epoll都是IO多路复用机制.这里的复用其实可以理解为复用的线程,即一个(或者较少的)线程完成多个IO的读写.这里总结下这三个函数的区别. 1 select 1.1 sele ... 
随机推荐
- ABP实践(3)-ASP.NET Core 2.x版本(从创建实体到输出api)简单实现商品列表及增删改
			项目基于前两篇文章. 本章创建一个简单版的商品管理后台api,用到EF Core用code fist迁移数据创建数据库. 创建Goods实体 在领域层xxx.Core项目[新建文件夹Goods;文件夹 ... 
- Docker应用场景
			Docker的应用场景 Web 应用的自动化打包和发布. 自动化测试和持续集成.发布. 在服务型环境中部署和调整数据库或其他的后台应用. 从头编译或者扩展现有的OpenShift或Cloud Foun ... 
- Docker国内仓库和镜像
			由于网络原因,我们在pull Image 的时候,从Docker Hub上下载会很慢...所以,国内的Docker爱好者们就添加了一些国内的镜像(mirror),方便大家使用. 一.国内Docker仓 ... 
- [POI 2009]Lyz
			Description 题库链接 初始时滑冰俱乐部有 \(1\) 到 \(n\) 号的溜冰鞋各 \(k\) 双.已知 \(x\) 号脚的人可以穿 \(x\) 到 \(x+d\) 的溜冰鞋.有 \(m\ ... 
- css布局------上下高度固定,中间高度自适应容器
			HTML <body> <div class="container"> <div class="header"></d ... 
- .11-浅析webpack源码之Storage模块
			至此已完成NodeJsInputFileSysten模块的讲解,下一步就是实际实用的模块: compiler.inputFileSystem = new CachedInputFileSystem(n ... 
- Matlab function lorenzgui
			function lorenzgui %LORENZGUI Plot the orbit around the Lorenz chaotic attractor. % This function an ... 
- 简单说一下UWP中的JumpList
			在Windows10的10856这个版本中,微软为桌面版提供了一组新的应用交互方式,磁贴和Toast通知的个性化都有了一定的改善.针对磁贴方面,微软为我们提供了一组新的API来扩充我们对应用的交互方式 ... 
- element-ui中table表头表格错误问题解决
			我用的是element-ui v1.4.3 在iframe关闭和切换导航会引起有table的表格错位,解决办法: handleAdminNavTab: function(tab) { var admi ... 
- Google Chrome 下载&绿化&增强
			Chrome下载 Google Chrome 已经可以在线更新,虽然比较慢! 国内常用的更新地址有两处:chromedownloads 和 shuax(耍下): https://www.chromed ... 
