真·Redis缓存优化—97%的优化率你见过嘛?
本文通过一封618前的R2M(公司内部缓存组件,可以认为等同于Redis)告警,由浅入深的分析了该告警的直接原因与根本原因,并根据原因提出相应的解决方法,希望能够给大家在排查类似问题时提供相应的思路。
一、问题排查
1.1 邮件告警
正值618值班前夕,某天收到了邮件告警,告警内容如下:
您好,R2M监控报警,请您及时追踪一下! 报警信息:告警ID:6825899, 应用:zr_credit_portal, 负责人:zhangsan, 告警类型:内存使用率, 时间:2023-06-15 16:00:04。实例:(10.0.0.0:5011-slave), 当前:9212MB 超过警戒值:8748MB 实例最大内存:10800 MB,内存使用率:85 % ;实例:(10.0.0.0:5023-master), 当前:9087MB 超过警戒值:8748MB 实例最大内存:10800 MB,内存使用率:84 % ;实例:(10.0.0.0:5017-master), 当前:9214MB 超过警戒值:8748MB 实例最大内存:10800 MB,内存使用率:85 % ;
大概内容是说,R2M集群使用率已经达到85%,需要紧急处理下。
我们的缓存集群配置如下,总共32400MB容量,三主三从,每个主节点10800M容量,目前使用最高的已经达到9087M。R2M使用集群模式进行部署。

首先的思路就是使用大key统计,查看是哪些缓存占用了容量。因为大key统计是从节点进行扫描,所以不用担心会影响线上主流程。

1.2 代码分析
大key主要分为两类,一类是xxx_data,一类是xxx_interfacecode_01,按照此规律去代码中寻找存放key的地方
String dataKey = task.getTaskNo() + "_data";
cacheClusterClient.setex(dataKey.getBytes(), EXPIRATION, DataUtil.objectToByte(paramList));
key = task.getTaskNo() + "_" + item.getInterfaceCode() + "_" + partCount;
cacheClusterClient.setex(key.getBytes(), EXPIRATION,DataUtil.objectToByte(dataList));
找到了代码位置后,分析其业务流程:

1.3 告警原因
综合上图分析,此次占用率过高的原因可以分为直接原因与根本原因:
1.3.1 直接原因
查看运营后台确实发现有用户在此前三天创建了大量的跑批任务,导致缓存中样本与结果数量增加,从而导致缓存使用率过高。
1.3.2 根本原因
分析代码后,根据上文描述缓存中主要有两块数据:样本与结果
首先是样本在缓存中存了一下随机又取出,本操作毫无意义,只会占用缓存容量。
结果分批分片存储,此步骤有意义,主要是为了防止在多任务并行处理时,如果不将数据分片存入缓存,很有可能导致数据在JVM中占用大量空间,进而导致FULL GC的问题。(之前文章已分析)
跑批结束后,中间数据正常来说已经无用,但是业务流程并没有主动删除无用数据,而是等待超时后自动删除,本操作会导致数据在缓存中额外存储较长时间。
至此,已经分析出了本次缓存使用率过高的原因(其实还没有,直接原因只分析出了表象,直接原因的“根本原因”还未有结论)。
二、问题解决
上文分析了本次告警的排查过程,以下是如何解决问题,也是分为如何解决直接原因与解决根本原因。
2.1 直接原因
2.1.1 原因分析
正值618前夕,最好不考虑操作会对系统产生的影响,因此只能先考虑让对应的用户暂时停止创建跑批,以免继续占用内存导致影响线上业务。
此时观察监控图又发现:

用户是从三天前就开始创建跑批任务的(对应缓存开始增长的时间点),但是缓存的有效期只有一天,按道理来说从第二天开始每天的缓存都应该下降不少才对(因为前一天的已经过期了),为什么看监控图这三天的缓存使用率近乎直线上升呢?
此处可以思考30s,与Redis特性有关。
根据之前刚系统的学完Redis的相关特性,关注到此问题点后,开始思考有没有可能是虽然我们设置了超时时间是一天,但是实际上数据并没有被物理删除呢(Redis的缓存淘汰策略)?
随后查看R2M相关文档:

其中:
如果带有生存时间的键非常多的话, 那么在键的生存时间变为
0, 直到键真正被删除这中间, 可能会有一段比较显著的时间间隔。
这不就是我们的特性吗,从刚刚的我们搜索大key的图中可以看到,我们有很多带超时的key并且size都很大,很有可能虽然已经超时了(即TTL变为0)但该数据并没有访问,并且由于R2M渐进式删除,某一个Key可能会在超时后很久才会被真正的物理删除。
至此,直接原因的根本原因已经找到了。
2.1.2 解决
那么如何解决呢?根据一个Key过期时被物理删除的两种策略:
注意:
Redis 使用以下两种方式删除过期的键
当一个键被访问时,程序会对这个键进行检查,如果键已经过期,那么该键将被删除。
底层系统会在后台渐进地查找并删除那些过期的键,从而处理那些已经过期、但是不会被访问到的键。
首先通过访问的形式去删除数据肯定是愚蠢且没必要的(都能访问并且知道要过期了不如直接删除),那么可以选择提高渐进的查找速率。从而将那些超时的数据物理删除
于是我们联系了R2M对应运维:

根据上述聊天记录可知,确实有参数可以调整渐进式物理删除的频率,而我们的缓存集群则之前因为不知名原因(项目团队做过更换)被调整为了10,大约降低了六倍,此结果也符合我们的预期,从侧面印证了我们的猜想是正确的。
当时处于618前夕,我们没有并没有修改该参数,在618之后,我们随即提了工单修改该参数,将该参数从10提高到80:

审批通过之后,我们观察r2m的下降速率:

可以看到,在6.20号我们调整了参数后,在没有大批量数据添加后,r2m使用率的下降速率明显变快。
至此,缓存使用率告警的直接原因已经解决完毕,真正的原因就是有大量的key过期后并没有被删除,观察后续缓存使用率都没有太高。此外,即时有大量的跑批任务,如果不是在同一天内直接添加,一般不会造成使用率过高的问题。
2.2 根本原因
上文在调整参数后,基本可以满足用户的日常业务需求,但是如果用户确实有一天之内有大量跑批任务的需求,那么此方案仍不能解决根本问题,还会造成使用率过高有可能影响线上业务的风险。
那么要从根本上解决此问题,就需要对跑批流程进行优化,按照1.2中流程示意以及原因分析:
样本就已经完全没有必要存储在缓存中,所以在代码中直接采用参数传递的方式传入给下一步流程。
结果分片肯定是有意义的,原因上文中也提到了,但是redis缓存的空间(即内存)是比较宝贵的,而oss的空间成本(硬盘)则是比较廉价的,并且考虑本身业务就是离线业务,时效性以及查询速率并不是最关键的因素,因此综合考虑将跑批的结果分片数据存储至oss
在跑批流程结束后,主动删除oss中的结果分片数据,避免数据无用后仍占用存储空间。此外在oss端设置7天自动删除,防止系统原因异常导致数据未删除而永久存在
综上,结合以上的优化思想,重新设计的流程图如下:

至此,即时后续用户数据量再大,也无论是分一天创建还是多天创建,都不会导致缓存使用率告警而有可能带来的线上业务问题。
2.3 优化率
上线完成后的缓存使用情况:

可以看到几乎是断崖式下降。
缓存优化率:
改造前

改造后

(8.35-0.17)/8.35≈97.96%
三、总结
本文主要通过一封告警邮件,由浅入深的将系统中存在的缓存问题与流程优化。在解决完实际问题后,我们应该都会有一些心得与总结,从而下次自己在开发过程中避免再犯这样的问题,也能够自己对自己再做一次总结与归档。要做到能够知其然更要知其所以然。以下总结是自己的由浅入深的一点点心得。
3.1 不同中间件应该负责不同的事
“韩信点兵,多多益善”,一名好的将军就是能将不同的士兵分配不同的职责,从而让士兵能够在自己擅长的领域内各尽其职。对我们研发来说,选择不同的中间件完成不同的功能则是能够反应我们研发的技术水平。
像本文来说,可供存储中间数据的有好多中间件,除了Redis、Oss,还有Mysql、Hive、ES、CK等,我们需要根据不同的业务需求选择不同的中间件完成对应的功能。本案例中很明显数据的特性为大量的、不要求速度的,而Redis的存储特性为少量的、快速的,很明显这两个是背道而驰的需求与业务,因此我们在选用时应该选择正确的中间件。
3.2 学习技术细节有没有用
其实之前也有学了很多的技术、框架的实现细节,但是绝大多数都是学完就学完了,并没有太多实践的环节。而这次案例分析正好处于之前刚刚学完Redis的相关细节,没隔多久就能够应用到本次的实践环节,算是理论与实践结合。此外这次案例也能够很大程度上提升自己的学习兴趣。
作者:京东科技 韩国凯
来源:京东云开发者社区 转载请注明来源
真·Redis缓存优化—97%的优化率你见过嘛?的更多相关文章
- Redis缓存设计与性能优化
Redis我们一般是用作缓存,扛并发:或者用于某些特定的业务场景,比如前面说到redis各种数据类型的使用场景以及redis的哨兵和集群模式. 这里主要整理了下redis用作缓存,存在的一些问题,以及 ...
- asp.net性能优化之使用Redis缓存(入门)
1:使用Redis缓存的优化思路 redis的使用场景很多,仅说下本人所用的一个场景: 1.1对于大量的数据读取,为了缓解数据库的压力将一些不经常变化的而又读取频繁的数据存入redis缓存 大致思路如 ...
- redis缓存优化
redis缓存优化 一.问题 在Javaweb项目中,如果每次刷新,所有资源都重新从数据库中读取,这样每次效率会很低,在这里可以使用redis非关系型数据库,将一些不经常变化得资源加载进内存中.提高效 ...
- 第三节:Redis缓存雪崩、击穿、穿透、双写一致性、并发竞争、热点key重建优化、BigKey的优化 等解决方案
一. 缓存雪崩 1. 含义 同一时刻,大量的缓存同时过期失效. 2. 产生原因和后果 (1). 原因:由于开发人员经验不足或失误,大量热点缓存设置了统一的过期时间. (2). 产生后果:恰逢秒杀高峰, ...
- redis高可用、redis集群、redis缓存优化
今日内容概要 redis高可用 redis集群 redis缓存优化 内容详细 1.redis高可用 # 主从复制存在的问题: 1 主从复制,主节点发生故障,需要做故障转移,可以手动转移:让其中一个sl ...
- Django之使用redis缓存session,历史浏览记录,首页数据实现性能优化
Redis缓存session 配置Django缓存数据到redis中 # diango的缓存配置 CACHES = { "default": { "BACKEND&quo ...
- nginx+redis 实现 jsp页面缓存,提升系统吞吐率
最近在开发的时候,发现之前APP客户端的一部分页面用的是webview交互,这些页面请求很多,打开一套试卷,将会产生100+的请求量,导致系统性能下降.于是考虑在最靠近客户端的Nginx服务器上做Re ...
- 转 cocos2d-x 优化(纹理渲染优化、资源缓存、内存优化)
概述 包括以下5种优化:引擎底层优化.纹理优化.渲染优化.资源缓存.内存优化 引擎优化 2.0版本比1.0版本在算法上有所优化,效率更高.2.0版本使用OpenGl ES 2.0图形库,1.0版本 ...
- 优化tomcat配置(从内存、并发、缓存4个方面)优化
Tomcat内存优化 Tomcat内存优化主要是对 tomcat 启动参数优化,我们可以在 tomcat 的启动脚本 catalina.sh 中设置 java_OPTS 参数. JAVA_OPTS参数 ...
- Redis持久化——问题定位与优化(三)
核心知识点: 1.fork操作 a.在RDB或AOF重写时,会执行fork操作创建子进程,fork操作是一个重量级操作. b.改善fork操作耗时的手段:避免使用Xen.配置Redis实例最大使用内存 ...
随机推荐
- C++面试八股文:在C++中,有哪些可执行体?
某日二师兄参加XXX科技公司的C++工程师开发岗位第14面: 面试官:在C++中,有哪些可执行体? 二师兄:可执行体? 面试官:也就是可调用对象. 二师兄:让我想一想.函数.函数指针.类的静态方法.类 ...
- Windows11右键菜单修改为Win10模式的方法
Windows11右键菜单修改为Win10模式的方法 自述: 更新win11后看着鼠标右键的菜单有些不太舒服,索性就改回了win10的右键菜单的样式 , 下面开始进行操作 第一步 首先以管理员方式打开 ...
- AR技术的应用与未来
目录 随着科技的不断进步,增强现实(AR)技术也在不断发展壮大.AR技术是一种通过计算机技术和传感器技术将虚拟信息融合到现实世界中的技术,可以为用户带来一种全新的.交互性更强的体验.本文将探讨AR技术 ...
- JavaScript 整理的基础的方法
innerHTML //innerHTML 属性设置或返回表格行的开始和结束标签之间的 HTML. innertext//innerText 属性返回文本值 没有结构信息 $("#test& ...
- 最简单的人脸检测(免费调用百度AI开放平台接口)
远程调用百度AI开放平台的web服务,快速完成人脸识别 欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos ...
- TCP/IP协议发明人G-Cerf
如果你是一个IT人,你可以不知道Vinton G. Cerf博士,但你不可能不知道TCP/IP; 如果你不是一个IT人,你可以不知道TCP/IP,但你不可能不知道互联网; 如果从1973年起,Vint ...
- 【调制解调】SSB 单边带调幅
说明 学习数字信号处理算法时整理的学习笔记.同系列文章目录可见 <DSP 学习之路>目录,代码已上传到 Github - ModulationAndDemodulation.本篇介绍 SS ...
- Federated Learning002
联邦学习笔记--002 2022.11.26周六 今天学习了联邦学习中又一篇很经典的论文--Federated Machine Learning: Concept and Applications(联 ...
- 单行编辑控件不能有多行文本 matlab
单行编辑控件不能有多行文本 matlab 解决方法:双击进入控件,把max参数改2以及以上
- 常用语言的线程模型(Java、go、C++、python3)
背景知识 软件是如何驱动硬件的? 硬件是需要相关的驱动程序才能执行,而驱动程序是安装在操作系统内核中.如果写了一个程序A,A程序想操作硬件工作,首先需要进行系统调用,由内核去找对应的驱动程序驱使硬件工 ...