「codeforces - 1608F」MEX counting
首先考虑暴力,枚举规划前缀 \([1, i]\) 和前缀 mex \(x\),则我们需要 \(x\) 个数来填了 \([0, x)\),还剩下 \(i-x\) 个数随便填 \([0, x) \cup (x, n]\),如果直接组合数算可能会出问题,考虑 dp。
定义 \(f[i][x][j]\) 表示规划前缀 \([1, i]\),当前的 mex 为 \(x\),还有 \(j\) 个数当前不对 mex 的取值造成影响(也就是说他们都大于 \(x\),这 \(j\) 个数是指在 \(a\) 数组中的,所以我们不必关心这 \(j\) 个数具体是什么)。转移就分两种情况:
- \(a[i+1] \neq x\):\((i+1, x, j) \gets (i+1, x, j)+(i, x, j)*(x+j)\) 和 \((i+1, x, j+1) \gets (i, x, j)\),第一个就是考虑当加入的 \(a[i+1]\) 属于那 \(j\) 个数或者属于 \([0, x)\),第二个很简单;
- \(a[i+1] = x\):设当前 mex 变成了 \(y\),则有 \((i+1, y, j-y+x+1) \gets (i+1, y, j-y+x+1)+(i, x, j) \times \binom{j}{y-x-1} \times (y-x-1)!\),意义明显,注意后面那个是排列数而不是组合数。
然后这个是 \(O(n^2k^2)\) 的,把刷表改成填表后前缀和优化即可。
using modint = modint998244353;
int n, K, a[2100];
modint dp[2][2100][2100], sum[2][2100][2100], fct[2100], ifct[2100];
inline int L(int i) { return max(0, a[i]-K); }
inline int R(int i) { return min(i, a[i]+K); }
signed main() {
ios::sync_with_stdio(0);
cin.tie(0);
fct[0] = 1;
for (int i=1; i<2100; ++i) {
fct[i] = fct[i-1]*i;
}
ifct[2099] = fct[2099].inv();
for (int i=2098; i>=0; --i) {
ifct[i] = ifct[i+1]*(i+1);
}
cin >> n >> K;
for (int i=1; i<=n; ++i) {
cin >> a[i];
}
dp[0][0][0] = sum[0][0][0] = 1;
for (int i=1,cur=1; i<=n; ++i,cur^=1) {
for (int j=0; j<=i; ++j) {
for (int x=L(i); x<=R(i) && x<=j; ++x) {
dp[cur][x][j] = dp[cur^1][x][j]*j;
if (j) {
dp[cur][x][j] += dp[cur^1][x][j-1];
}
if (j && x) {
dp[cur][x][j] += sum[cur^1][min(x-1, R(i-1))][j-1]*ifct[j-x];
}
sum[cur][x][j] = dp[cur][x][j]*fct[j-x];
if (x) {
sum[cur][x][j] += sum[cur][x-1][j];
}
}
}
for (int j=0; j<=i-1; ++j) {
for (int x=L(i-1); x<=R(i-1) && x<=j; ++x) {
dp[cur^1][x][j] = sum[cur^1][x][j] = 0;
}
}
}
modint ans = 0;
for (int i=0; i<=n; ++i) {
for (int j=L(n); j<=R(n) && j<=i; ++j) {
ans += dp[n&1][j][i]*fct[n-j]*ifct[n-i];
}
}
cout << ans.val() << "\n";
}
「codeforces - 1608F」MEX counting的更多相关文章
- 「CodeForces 581D」Three Logos
BUPT 2017 Summer Training (for 16) #3A 题意 给你三个矩形,需要不重叠不留空地组成一个正方形.不存在输出-1,否则输出边长和这个正方形(A,B,C表示三个不同矩形 ...
- 「CodeForces - 50C 」Happy Farm 5 (几何)
BUPT 2017 summer training (16) #2B 题意 有一些二维直角坐标系上的整数坐标的点,找出严格包含这些点的只能八个方向走出来步数最少的路径,输出最少步数. 题解 这题要求严 ...
- 「CodeForces - 598B」Queries on a String
BUPT 2017 summer training (for 16) #1I 题意 字符串s(1 ≤ |s| ≤ 10 000),有m(1 ≤ m ≤ 300)次操作,每次给l,r,k,代表将r位置插 ...
- 「CodeForces - 717E」Paint it really, really dark gray (dfs)
BUPT 2017 summer training (for 16) #1H 题意 每个节点是黑色or白色,经过一个节点就会改变它的颜色,一开始在1节点.求一条路径使得所有点变成黑色. 题解 dfs时 ...
- 「CodeForces 476A」Dreamoon and Stairs
Dreamoon and Stairs 题意翻译 题面 DM小朋友想要上一个有 \(n\) 级台阶的楼梯.他每一步可以上 \(1\) 或 \(2\) 级台阶.假设他走上这个台阶一共用了 \(x\) 步 ...
- 「CodeForces 546B」Soldier and Badges 解题报告
CF546B Soldier and Badges 题意翻译 给 n 个数,每次操作可以将一个数 +1,要使这 n 个数都不相同, 求最少要加多少? \(1 \le n \le 3000\) 感谢@凉 ...
- 「Codeforces 79D」Password
Description 有一个 01 序列 \(a_1,a_2,\cdots,a_n\),初始时全为 \(0\). 给定 \(m\) 个长度,分别为 \(l_1\sim l_m\). 每次可以选择一个 ...
- 「Codeforces 468C」Hack it!
Description 定义 \(f(x)\) 表示 \(x\) 的各个数位之和.现在要求 \(\sum_{i=l}^rf(i)\bmod a\). 显然 ans=solve(l,r)%a; if(a ...
- 「Codeforces 724F」Uniformly Branched Trees
题目大意 如果两棵树可以通过重标号后变为完全相同,那么它们就是同构的. 将中间节点定义为度数大于 \(1\) 的节点.计算由 \(n\) 个节点,其中所有的中间节点度数都为 \(d\) 的互不同构的树 ...
- 「codeforces - 1284G」Seollal
给定 \(n\times m\) 的网格图,有些格子有障碍,无障碍且相邻的格子之间连边形成图.保证 \((1, 1)\) 无障碍,保证无障碍格子连通. 将网格图黑白染色,相邻格子颜色不同,\((1, ...
随机推荐
- 案例分享-被*队友的mybatis蠢哭的一天
昨晚加班的时候被队友拉着看一个mybatis的问题,耗费了我一个小时时间,最后差点没被我打死,实在是觉得滑稽,今天回家写下来跟大伙分享一下. 问题现象 Invalid bound statement ...
- 解决org.apache.ibatis.builder.BuilderException: Error parsing SQL Mapper Configuration. Cause: java.io.IOException: Could not find resource **/**/dao/**Mapper.xml问题
1. 问题分析 出现此问题的原因是资源过滤的问题,编写在DAO包中的XML文件没有被打包. 2. 解决方案 在pom.xml文件中加入如下资源过滤: <!-- 静态资源导出问题 --> & ...
- 原生AJAX的学习
基础知识 知识点梳理见图: 自己动手实践案例 案例1: 访问本地文件 <!DOCTYPE html> <html> <body> <div id=" ...
- WPF中小的技能点 1
图片圆角的处理方式 采用boder里background背景设置图片并设置对应的圆角 <Border CornerRadius="20"> < ...
- 记一次加锁导致ECS服务器CPU飙高的处理
导航 火线告警,CPU飚了 版本回退,迅速救火 猜测:分布式锁是罪魁祸首 代码重构,星夜上线 防患未然,功能可开关 高度戒备,应对早高峰 实时调整方案,稳了 结语 参考 本文首发于智客工坊-<记 ...
- 浅谈TCP和UDP
简介 在计算机网络中,TCP(传输控制协议)和UDP(用户数据报协议)是两个常用的传输层协议.它们分别提供了可靠的数据传输和快速的数据传送,成为互联网世界中的双子星.本文将探讨TCP和UDP的特点.优 ...
- 通用密钥,无需密码,在无密码元年实现Passkeys通用密钥登录(基于Django4.2/Python3.10)
毋庸讳言,密码是极其伟大的发明,但拜病毒和黑客所赐,一旦密码泄露,我们就得绞尽脑汁再想另外一个密码,但记忆力并不是一个靠谱的东西,一旦遗忘密码,也会造成严重的后果,2023年业界巨头Google已经率 ...
- C#语言async, await 简单介绍与实例(入门级)
本文介绍异步编程的基本思想和语法.在程序处理里,程序基本上有两种处理方式:同步和异步.对于有些新手,甚至认为"同步"是同时进行的意思,这显然是错误的. 同步的基本意思是:程序一个个 ...
- 【技术积累】Vue.js中的事件【一】
Vue中的事件是什么 在Vue.js中,事件是用于处理用户交互的重要机制.Vue.js提供了一系列的事件处理方法和指令,使开发者能够方便地处理用户的各种操作. 1. 事件绑定:Vue.js通过v-on ...
- OO第二次大作业
前言 前言的前言 第二篇blog跟上一篇只隔了将近一个月,但是感觉心境上好像发生了很多的变化,认识到了自己存在的很多不足(可能是菜单折磨的),感觉对很多东西都一知半解,希望在写完这篇总结性blog之后 ...