【Codeforces718C】Sasha and Array 线段树 + 矩阵乘法
C. Sasha and Array
standard output
Sasha has an array of integers a1, a2, ..., an. You have to perform m queries. There might be queries of two types:
- 1 l r x — increase all integers on the segment from l to r by values x;
- 2 l r — find
, where f(x) is the x-th Fibonacci number. As this number may be large, you only have to find it modulo109 + 7.
In this problem we define Fibonacci numbers as follows: f(1) = 1, f(2) = 1, f(x) = f(x - 1) + f(x - 2) for all x > 2.
Sasha is a very talented boy and he managed to perform all queries in five seconds. Will you be able to write the program that performs as well as Sasha?
Input
The first line of the input contains two integers n and m (1 ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000) — the number of elements in the array and the number of queries respectively.
The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109).
Then follow m lines with queries descriptions. Each of them contains integers tpi, li, ri and may be xi (1 ≤ tpi ≤ 2, 1 ≤ li ≤ ri ≤ n,1 ≤ xi ≤ 109). Here tpi = 1 corresponds to the queries of the first type and tpi corresponds to the queries of the second type.
It's guaranteed that the input will contains at least one query of the second type.
Output
For each query of the second type print the answer modulo 109 + 7.
Examples
5 4
1 1 2 1 1
2 1 5
1 2 4 2
2 2 4
2 1 5
output
5
7
9
Note
Initially, array a is equal to 1, 1, 2, 1, 1.
The answer for the first query of the second type is f(1) + f(1) + f(2) + f(1) + f(1) = 1 + 1 + 1 + 1 + 1 = 5.
After the query 1 2 4 2 array a is equal to 1, 3, 4, 3, 1.
The answer for the second query of the second type is f(3) + f(4) + f(3) = 2 + 3 + 2 = 7.
The answer for the third query of the second type is f(1) + f(3) + f(4) + f(3) + f(1) = 1 + 2 + 3 + 2 + 1 = 9.
Solution
题目大意:维护一个序列,支持两种操作:
1.区间[l,r]的权值+x
2.询问区间[l,r]的函数和,即$\sum _{x=l}^{r}fib(x)$这里的函数即斐波那契函数
一般求斐波那契函数的方法可以考虑矩阵乘法,这里也是这样的。
我们不用线段树维护权值,我们用线段树维护矩阵$fib^{a[l]-1}$。
矩阵的合并是可以相加的。
然后就可以了。
这道题很卡常数,我平常的习惯,矩阵是从1~n,而我这里要是从1开始就TLE了..所以应该从0~n-1
Code
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
#define LL long long
inline int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define P 1000000007
#define MAXN 100010
int N,M,a[MAXN];
struct MatrixNode{LL a[][]; MatrixNode() {memset(a,,sizeof(a));}}fib;
MatrixNode operator + (MatrixNode x,MatrixNode y)
{
MatrixNode re;
for (int i=; i<=; i++)
for (int j=; j<=; j++)
re.a[i][j]=(x.a[i][j]+y.a[i][j])%P;
return re;
}
MatrixNode operator * (MatrixNode x,MatrixNode y)
{
MatrixNode re;
for (int k=; k<=; k++)
for (int i=; i<=; i++)
if (x.a[i][k])
for (int j=; j<=; j++)
if (y.a[k][j])
(re.a[i][j]+=(x.a[i][k]*y.a[k][j])%P)%=P;
return re;
}
MatrixNode operator ^ (MatrixNode x,int y)
{
MatrixNode re;
for (int i=; i<=; i++) re.a[i][i]=;
for (int i=y; i; i>>=,x=x*x) if (i&) re=re*x;
return re;
}
namespace SegmentTree
{
struct SegmentTreeNode{int l,r; MatrixNode tag,sum;}tree[MAXN<<];
#define ls now<<1
#define rs now<<1|1
inline void Update(int now) {tree[now].sum=tree[ls].sum+tree[rs].sum;}
inline void PushDown(int now)
{
if (tree[now].l==tree[now].r) return;
MatrixNode D=tree[now].tag;
tree[ls].sum=tree[ls].sum*D; tree[ls].tag=tree[ls].tag*D;
tree[rs].sum=tree[rs].sum*D; tree[rs].tag=tree[rs].tag*D;
memset(tree[now].tag.a,,sizeof(tree[now].tag.a));
for (int i=; i<=; i++) tree[now].tag.a[i][i]=;
}
inline void BuildTree(int now,int l,int r)
{
tree[now].l=l; tree[now].r=r;
for (int i=; i<=; i++) tree[now].tag.a[i][i]=;
if (l==r) {tree[now].sum=fib^(a[l]-); return;}
int mid=(l+r)>>;
BuildTree(ls,l,mid); BuildTree(rs,mid+,r);
Update(now);
}
inline void Modify(int now,int L,int R,MatrixNode D)
{
int l=tree[now].l,r=tree[now].r;
PushDown(now);
if (L<=l && R>=r) {tree[now].tag=tree[now].tag*D; tree[now].sum=tree[now].sum*D; return;}
int mid=(l+r)>>;
if (L<=mid) Modify(ls,L,R,D);
if (R>mid) Modify(rs,L,R,D);
Update(now);
}
inline MatrixNode Query(int now,int L,int R)
{
int l=tree[now].l,r=tree[now].r;
PushDown(now);
if (L<=l && R>=r) return tree[now].sum;
int mid=(l+r)>>; MatrixNode re;
if (L<=mid) re=re+Query(ls,L,R);
if (R>mid) re=re+Query(rs,L,R);
return re;
}
}
int main()
{
N=read(),M=read();
for (int i=; i<=N; i++) a[i]=read();
fib.a[][]=; fib.a[][]=; fib.a[][]=; fib.a[][]=;
SegmentTree::BuildTree(,,N);
while (M--)
{
int opt=read(),x,y,z;
switch (opt)
{
case : x=read(),y=read(),z=read(); SegmentTree::Modify(,x,y,fib^z); break;
case : x=read(),y=read(); printf("%I64d\n",SegmentTree::Query(,x,y).a[][]%P); break;
}
}
return ;
}
【Codeforces718C】Sasha and Array 线段树 + 矩阵乘法的更多相关文章
- CF718C Sasha and Array 线段树 + 矩阵乘法
有两个操作: 将 $[l,r]$所有数 + $x$ 求 $\sum_{i=l}^{r}fib(i)$ $n=m=10^5$ 直接求不好求,改成矩阵乘法的形式: $a_{i}=M^x\times ...
- CF718C Sasha and Array 线段树+矩阵加速
正解:线段树 解题报告: 传送门! 首先这种斐波拉契,又到了1e9的范围,又是求和什么的,自然而然要想到矩阵加速昂 然后这里主要是考虑修改操作,ai+=x如果放到矩阵加速中是什么意思呢QAQ? 那不就 ...
- CF718C Sasha and Array [线段树+矩阵]
我们考虑线性代数上面的矩阵知识 啊呸,是基础数学 斐波那契的矩阵就不讲了 定义矩阵 \(f_x\) 是第 \(x\) 项的斐波那契矩阵 因为 \(f_i * f_j = f_{i+j}\) 然后又因为 ...
- CF719E. Sasha and Array [线段树维护矩阵]
CF719E. Sasha and Array 题意: 对长度为 n 的数列进行 m 次操作, 操作为: a[l..r] 每一项都加一个常数 C, 其中 0 ≤ C ≤ 10^9 求 F[a[l]]+ ...
- Codeforces Round #373 (Div. 2) E. Sasha and Array 线段树维护矩阵
E. Sasha and Array 题目连接: http://codeforces.com/contest/719/problem/E Description Sasha has an array ...
- codeforces 719E E. Sasha and Array(线段树)
题目链接: E. Sasha and Array time limit per test 5 seconds memory limit per test 256 megabytes input sta ...
- hdu 5068(线段树+矩阵乘法)
矩阵乘法来进行所有路径的运算, 线段树来查询修改. 关键还是矩阵乘法的结合律. Harry And Math Teacher Time Limit: 5000/3000 MS (Java/Others ...
- 【对不同形式矩阵的总结】WC 2009 最短路径问题(线段树+矩阵乘法)
题意 题目链接:https://www.luogu.org/problem/P4150 一个 \(6\times n\) 的网格图,每个格点有一个初始权值.有两种操作: 修改一个格子的权值 求 ...
- MAZE(2019年牛客多校第二场E题+线段树+矩阵乘法)
题目链接 传送门 题意 在一张\(n\times m\)的矩阵里面,你每次可以往左右和下三个方向移动(不能回到上一次所在的格子),\(1\)表示这个位置是墙,\(0\)为空地. 现在有\(q\)次操作 ...
随机推荐
- iOS 获取相册中图片的名字 url
__block NSString *imageFileName; NSURL *imageURL = [info valueForKey:UIImagePickerControllerReferenc ...
- Spring 4 集成Apache CXF开发JAX-RS Web Service
什么是JAX-RS 在JSR-311规范中定义,即Java API for RESTful Web Services,一套Java API,用于开发 RESTful风格的Webservice. 工程概 ...
- jQuery对表格的操作及其他应用
表格操作 1.隔行变色:对普通表格进行隔行换色:单击显示高亮样式:复选框选中高亮 <!DOCTYPE html> <html> <head> <meta ht ...
- git rebase与 git合并(error: failed to push some refs to)解决方法
1.遇到的问题 本地有一个git仓库,在github上新建了一个空的仓库,但是更新了REWADME.md的信息,即在github上多了一个提交. 关联远程仓库,操作顺序如下: git remote a ...
- Linux rm删除大批量文件
在使用rm删除大批量文件时,有可能会遭遇"参数列太长"(Argument list too long)的问题.如下所示 [oracle@DB-Server bdump]$ rm - ...
- [AlwaysOn Availability Groups]SQL Server错误日志(AG)
SQL Server错误日志(AG) SQL Server错误日志会记录影响AG的时间,比如: 1.和Windows故障转移集群交互 2.可用副本的状态 3.可用数据的状态 4.AG endpoint ...
- Oracle Listener 动态注册 与 静态注册
http://blog.csdn.net/tianlesoftware/article/details/5543166
- Windows 10 安装双系统 CentOS 7
系统环境:Windows 10 && CentOS 7 准备工具: ●CentOS7 官网下载地址:https://wiki.centos.org/Download (注意: i386 ...
- Vim自动补全神器–YouCompleteMe
一.简介 YouCompleteMe是Vim的自动补全插件,与同类插件相比,具有如下优势 1.基于语义补全 2.整合实现了多种插件 clang_complete.AutoComplPop .Super ...
- [django]用户认证中只允许登陆用户访问(网页安全问题)
当设计一个重要网页时,一般要求未从登陆界面访问的用户不能进入其他页面,那么需要如何设置呢? 如下 django中的url.py urlpatterns = [ url(r'^$', 'login ...