三维模型3DTile格式轻量化压缩处理的数据质量提升方法分析

在处理三维模型3DTile格式的轻量化压缩时,如何在减少数据量的同时,保证或提升数据质量是一大挑战。以下为一些提升数据质量的方法分析:

改进几何简化算法:在进行几何简化时,除了考虑顶点数量的减少,更要注重误差度量和形状特征。选择具有视觉优化功能的算法,例如基于四面体收缩的算法,可以尽可能减小简化带来的视觉影响,并保留模型的主要形状特征。

优化纹理压缩方案:在进行纹理压缩时,应根据具体需求选择合适的压缩算法。例如,对于需要高质量纹理的场景,可以使用无损压缩;而对于对纹理质量要求不高的场景,可以使用有损压缩以获得更高的压缩率。此外,还可以采用一些先进的纹理压缩技术,例如基于GPU的纹理压缩,以在压缩效率和纹理质量之间取得平衡。

精细控制数据精度:在降低数据精度以减小数据大小时,过度的精度降低会导致模型的位置、颜色等信息产生较大偏差。因此,我们需要根据具体需求,适度地控制数据精度。例如,在对浮点数进行量化压缩时,可以根据其表示的实际意义(如坐标值、颜色值等)来设定适当的精度阈值。

利用模型结构和上下文信息:在进行模型压缩时,考虑到模型的结构和上下文信息能够有效提升数据质量。例如,通过分层或者分块的方式,可以对模型不同部分进行不同级别的压缩;针对模型中的某些重要部分或者视觉敏感部分,可以保持较高的精度和细节;而对于模型中的冗余或者不重要部分,可以进行较大的压缩。

加强质量控制和验证:在模型压缩完成后,通过对比原始模型和压缩后的模型,进行详细的质量检查和验证,是保证数据质量的关键。例如,可以从视觉效果、数值误差等多个角度对模型进行评估,并根据评估结果调整压缩参数或方法。

总的来说,提升三维模型3DTile格式轻量化压缩处理的数据质量,需要我们在算法选择、参数设置、数据处理等各个环节中,都充分考虑到模型的特性和需求,以实现高质量的模型压缩。

三维工厂软件简介

三维工厂K3DMaker是一款三维模型浏览、分析、轻量化、顶层合并构建、几何校正、格式转换、调色裁切等功能专业处理软件。可以进行三维模型的网格简化、纹理压缩、层级优化等操作,从而实现三维模型轻量化。轻量化压缩比大,模型轻量化效率高,自动化处理能力高;采用多种算法对三维模型进行几何精纠正处理,精度高,处理速度快,超大模型支持;优秀数据处理和转换工具,支持将OSGB格式三维模型转换为3DTiles等格式,可快速进行转换,快来体验一下吧,下载地址详见插图。

三维模型3DTile格式轻量化压缩处理的数据质量提升方法分析的更多相关文章

  1. 基于WebGL/Threejs技术的BIM模型轻量化之图元合并

    伴随着互联网的发展,从桌面端走向Web端.移动端必然的趋势.互联网技术的兴起极大地改变了我们的娱乐.生活和生产方式.尤其是HTML5/WebGL技术的发展更是在各个行业内引起颠覆性的变化.随着WebG ...

  2. 新上线!3D单模型轻量化硬核升级,G级数据轻松拿捏!

    "3D模型体量过大.面数过多.传输展示困难",用户面对这样的3D数据,一定不由得皱起眉头.更便捷.快速处理三维数据,是每个3D用户对高效工作的向往. 在老子云最新上线的单模型轻量化 ...

  3. 适配抖音!三角面转换和3d模型体量减小,轻量化一键即可完成!

    抖音3d特效,可谓是越来越火爆了,这个有着迪士尼画风的3D大眼,就刷屏了国内外用户的首页! 有人好奇这些特效究竟是怎么制作的?其实就是把3D模型调整适配到头部模型上,调整位置或者大小就可以制作出一个简 ...

  4. 倾斜摄影3D模型|手工建模|BIM模型 轻量化处理

    一.什么是大场景? 顾名思义,大场景就是能够从一个鸟瞰的角度看到一个大型场景的全貌,比如一个园区.一座城市.一个国家甚至是整个地球.但过去都以图片记录下大场景,如今我们可以通过建造3D模型来还原大场景 ...

  5. 轻量化模型之MobileNet系列

    自 2012 年 AlexNet 以来,卷积神经网络在图像分类.目标检测.语义分割等领域获得广泛应用.随着性能要求越来越高,AlexNet 已经无法满足大家的需求,于是乎各路大牛纷纷提出性能更优越的 ...

  6. 轻量化模型之SqueezeNet

    自 2012 年 AlexNet 以来,卷积神经网络在图像分类.目标检测.语义分割等领域获得广泛应用.随着性能要求越来越高,AlexNet 已经无法满足大家的需求,于是乎各路大牛纷纷提出性能更优越的 ...

  7. 56 Marvin: 一个支持GPU加速、且不依赖其他库(除cuda和cudnn)的轻量化多维深度学习(deep learning)框架介绍

    0 引言 Marvin是普林斯顿视觉实验室(PrincetonVision)于2015年提出的轻量化GPU加速的多维深度学习网络框架.该框架采用纯c/c++编写,除了cuda和cudnn以外,不依赖其 ...

  8. 轻量化模型:MobileNet v2

    MobileNet v2 论文链接:https://arxiv.org/abs/1801.04381 MobileNet v2是对MobileNet v1的改进,也是一个轻量化模型. 关于Mobile ...

  9. 轻量化模型训练加速的思考(Pytorch实现)

    0. 引子 在训练轻量化模型时,经常发生的情况就是,明明 GPU 很闲,可速度就是上不去,用了多张卡并行也没有太大改善. 如果什么优化都不做,仅仅是使用nn.DataParallel这个模块,那么实测 ...

  10. CNN结构演变总结(二)轻量化模型

    CNN结构演变总结(一)经典模型 导言: 上一篇介绍了经典模型中的结构演变,介绍了设计原理,作用,效果等.在本文,将对轻量化模型进行总结分析. 轻量化模型主要围绕减少计算量,减少参数,降低实际运行时间 ...

随机推荐

  1. 从零开始的react入门教程(二),从react组件说到props/state的联系与区别

    壹 ❀ 引 在从零开始的react入门教程(一)一文中,我们搭建了第一个属于自己的react应用,并简单学习了jsx语法.jsx写法上与dom标签高度一致,当然我们也知道,本质上这些react元素都是 ...

  2. CF1826D Running Miles

    题目链接 题解 知识点:贪心,前缀和,枚举. 首先考虑一个贪心结论,选择区间端点一定是两个最大值,因此 \(i_1 = l,i_3 = r\) . 考虑变形式子 \((b_l + l) + b_{i_ ...

  3. NC17877 整数序列

    题目链接 题目 题目描述 给出一个长度为n的整数序列 \(a_1,a_2,...,a_n\) ,进行 \(m\) 次操作,操作分为两类. 操作1:给出 \(l,r,v\) ,将 \(a_l,a_{l+ ...

  4. Django实战之文件上传下载

    项目介绍 最近学习django,通过文件上传下载这个小项目,总结下常用的知识点. 做这个案例我有以下需求: 1.要支持一次上传多个文件 2.支持上传后记录上传的数据以及列表展示 3.支持下载和删除文件 ...

  5. Java Swing实现五子棋程序

    首先感谢08年MLDN出的这个培训视频,我把代码和文档整理了一下,发布出来给需要学习Swing的朋友. 源码地址: https://gitee.com/indexman/gobang 一.知识点准备: ...

  6. Go 中的反射 reflect 介绍和基本使用

    一.什么是反射 在计算机科学中,反射(英语:reflection)是指计算机程序在运行时(runtime)可以访问.检测和修改它本身状态或行为的一种能力.用比喻来说,反射就是程序在运行的时候能够&qu ...

  7. 【Android逆向】脱壳项目frida_dump 原理分析

    脱dex核心文件dump_dex.js 核心函数 function dump_dex() { var libart = Process.findModuleByName("libart.so ...

  8. mac更新系统后,提示xcrun的错误问题

    pycharm运行代码终端报错: xcrun: error: invalid active developer path (/Library/Developer/CommandLineTools), ...

  9. 分发函数singledispatch

    import functools @functools.singledispatch() def myfunc(arg): print("default myfunc({!r})" ...

  10. 【LeetCode动态规划#01】动规入门:求斐波那契数 + 爬楼梯 + 最小代价爬楼梯(熟悉解题方法论)

    斐波那契数 力扣题目链接(opens new window) 斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 .该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就 ...