STM32的内存管理(转)
背景
这里针对STM32F407芯片+1M外部内存的内存管理!(全篇是个人愚见,如果错误,请不吝指出!)
定义
首先,定义3个内存池,分别是内部SRAM,外表SRAM和CCM;通过指定内存中的绝对地址,后面就可以直接通过数组操纵内存数据了。这里的mem1的大小是112KB,这里用100KB,其余12KB 用作内存管理表;mem2的大小为1M,这里用960K,剩余用作内存管理表;mem3的大小为64KB,且CCM内存只能由CPU访问,这里用60KB,其余4KB用作内存管理表。
//内存池(32字节对齐)
__align(32) u8 mem1base[MEM1_MAX_SIZE]; //内部SRAM内存池
__align(32) u8 mem2base[MEM2_MAX_SIZE] __attribute__((at(0X68000000))); //外部SRAM内存池
__align(32) u8 mem3base[MEM3_MAX_SIZE] __attribute__((at(0X10000000))); //内部CCM内存池
虚拟地址映射表的内存部分在下图中:

内存管理表,顾名思义,管理内存的,它们都会占用内存空间,就是上面说到的。
//内存管理表
u16 mem1mapbase[MEM1_ALLOC_TABLE_SIZE]; //内部SRAM内存池MAP
u16 mem2mapbase[MEM2_ALLOC_TABLE_SIZE] __attribute__((at(0X68000000+MEM2_MAX_SIZE))); //外部SRAM内存池MAP
u16 mem3mapbase[MEM3_ALLOC_TABLE_SIZE] __attribute__((at(0X10000000+MEM3_MAX_SIZE))); //内部CCM内存池MAP
他们的具体大小如下:
//mem1内存参数设定.mem1完全处于内部SRAM里面.
#define MEM1_BLOCK_SIZE 32 //内存块大小为32字节
#define MEM1_MAX_SIZE 100*1024 //最大管理内存 100K
#define MEM1_ALLOC_TABLE_SIZE MEM1_MAX_SIZE/MEM1_BLOCK_SIZE //内存表大小
//mem2内存参数设定.mem2的内存池处于外部SRAM里面
#define MEM2_BLOCK_SIZE 32 //内存块大小为32字节
#define MEM2_MAX_SIZE 960 *1024 //最大管理内存960K
#define MEM2_ALLOC_TABLE_SIZE MEM2_MAX_SIZE/MEM2_BLOCK_SIZE //内存表大小
//mem3内存参数设定.mem3处于CCM,用于管理CCM(特别注意,这部分SRAM,仅CPU可以访问!!)
#define MEM3_BLOCK_SIZE 32 //内存块大小为32字节
#define MEM3_MAX_SIZE 60 *1024 //最大管理内存60K
#define MEM3_ALLOC_TABLE_SIZE MEM3_MAX_SIZE/MEM3_BLOCK_SIZE //内存表大小
再定义一个结构体:
struct _m_mallco_dev
{
void (*init)(u8); //初始化
u8 (*perused)(u8); //内存使用率
u8 *membase[SRAMBANK]; //内存池 管理SRAMBANK个区域的内存
u16 *memmap[SRAMBANK]; //内存管理状态表
u8 memrdy[SRAMBANK]; //内存管理是否就绪
};
接着,定义一个结构体变量,就可以操作内存了,如下:
struct _m_mallco_dev mallco_dev=
{
my_mem_init, //内存初始化
my_mem_perused, //内存使用率
mem1base,mem2base,mem3base, //内存池
mem1mapbase,mem2mapbase,mem3mapbase,//内存管理状态表
0,0,0, //内存管理未就绪
};
申请内存函数:my_mem_malloc
该函数的作用是划出一块内存给开发者,使用的方法是分配内存块,不足内存块大小的,按照一块进行划分,从高地址处开始划分,找到空的连续内存块,就在该内存块管理表中填入连续内存块数,这样该内存就被占用了,并且返回连续内存块的偏移地址;每一次划内存块,都是进行的整个内存块搜索。
//内存分配(内部调用)
//memx:所属内存块
//size:要分配的内存大小(字节)
//返回值:0XFFFFFFFF,代表错误;其他,内存偏移地址
u32 my_mem_malloc(u8 memx,u32 size)
{
signed long offset=0;
u32 nmemb; //需要的内存块数
u32 cmemb=0;//连续空内存块数
u32 i;
if(!mallco_dev.memrdy[memx])mallco_dev.init(memx);//未初始化,先执行初始化
if(size==0)return 0XFFFFFFFF;//不需要分配
nmemb=size/memblksize[memx]; //获取需要分配的连续内存块数
if(size%memblksize[memx])nmemb++;
for(offset=memtblsize[memx]-1;offset>=0;offset--)//搜索整个内存控制区
{
if(!mallco_dev.memmap[memx][offset])cmemb++;//连续空内存块数增加
else cmemb=0; //连续内存块清零
if(cmemb==nmemb) //找到了连续nmemb个空内存块
{
for(i=0;i<nmemb;i++) //标注内存块非空
{
mallco_dev.memmap[memx][offset+i]=nmemb;
}
return (offset*memblksize[memx]);//返回偏移地址
}
}
return 0XFFFFFFFF;//未找到符合分配条件的内存块
}
内存使用率函数:my_mem_perused
该函数较简单,就是查内存管理表,计算剩余空闲内存块的大小,比上总内存块数,就得到了内存使用率。
//获取内存使用率
//memx:所属内存块
//返回值:使用率(0~100)
u8 my_mem_perused(u8 memx)
{
u32 used=0;
u32 i;
for(i=0;i<memtblsize[memx];i++)
{
if(mallco_dev.memmap[memx][i])used++;
}
return (used*100)/(memtblsize[memx]);
}
疑问
关于清零内存空间,CCM和外部SRAM是除了内存管理表外的所以内存,全部清零,但是内部SRAM的112KB的空间是不一样的,u16 mem1mapbase[MEM1_ALLOC_TABLE_SIZE]; 定义的内存池基地址并不是从零开始的,那么100KB的内存会不会溢出?从高地址开始分配内存,分配的到吗?内存分配表的内存地址溢出了吗?--------这些问题暂时没有出现,程序正常运行,暂无定论。
注意:
关于堆栈在内存空间中的地址位置,在.map文件中可以找到,如果内存分配的时候,用到了这部分内存,是会出问题的,这是本内存管理存在的问题,最好是查.map文件后,避开这部分内存地址。
STM32的内存管理(转)的更多相关文章
- STM32的内存管理
ref:https://www.cnblogs.com/leo0621/p/9977932.html 这里针对STM32F407芯片+1M外部内存的内存管理!(全篇是个人愚见,如果错误,请不吝指出!) ...
- STM32 内存管理实验
参考原文<STM32F1开发指南> 内存管理简介 内存管理,是指软件运行时对计算机内存资源的分配和使用的技术.最主要的目的是如何高效.快速的分配,并且在适当的时候释放和回收内存资源.内存管 ...
- 【STM32】使用SDIO进行SD卡读写,包含文件管理FatFs(终)-配合内存管理来遍历SD卡
[STM32]使用SDIO进行SD卡读写,包含文件管理FatFs(一)-初步认识SD卡 [STM32]使用SDIO进行SD卡读写,包含文件管理FatFs(二)-了解SD总线,命令的相关介绍 [STM3 ...
- 【STM32】使用SDIO进行SD卡读写,包含文件管理FatFs(八)-认识内存管理
[STM32]使用SDIO进行SD卡读写,包含文件管理FatFs(一)-初步认识SD卡 [STM32]使用SDIO进行SD卡读写,包含文件管理FatFs(二)-了解SD总线,命令的相关介绍 [STM3 ...
- FreeRTOS 动态内存管理
以下转载自安富莱电子: http://forum.armfly.com/forum.php 本章节为大家讲解 FreeRTOS 动态内存管理,动态内存管理是 FreeRTOS 非常重要的一项功能,前面 ...
- STM32动态内存分配需要注意的地方
STM32进行动态内存分配是需要注意动态内存分配大小不要超过.S文件中设置Heap Size大小 如图所示: 0x4000 :可以分配得最大字节是16384bytes 这个地方malloc的大小超过了 ...
- .NET基础拾遗(1)类型语法基础和内存管理基础
Index : (1)类型语法.内存管理和垃圾回收基础 (2)面向对象的实现和异常的处理 (3)字符串.集合与流 (4)委托.事件.反射与特性 (5)多线程开发基础 (6)ADO.NET与数据库开发基 ...
- PHP扩展-生命周期和内存管理
1. PHP源码结构 PHP的内核子系统有两个,ZE(Zend Engine)和PHP Core.ZE负责将PHP脚本解析成机器码(也成为token符)后,在进程空间执行这些机器码:ZE还负责内存管理 ...
- linux2.6 内存管理——逻辑地址转换为线性地址(逻辑地址、线性地址、物理地址、虚拟地址)
Linux系统中的物理存储空间和虚拟存储空间的地址范围分别都是从0x00000000到0xFFFFFFFF,共4GB,但物理存储空间与虚拟存储空间布局完全不同.Linux运行在虚拟存储空间,并负责把系 ...
- linux2.6 内存管理——概述
在紧接着相当长的篇幅中,都是围绕着Linux如何管理内存进行阐述,在内核中分配内存并不是一件非常容易的事情,因为在此过程中必须遵从内核特定的状态约束.linux内存管理建立在基本的分页机制基础上,在l ...
随机推荐
- vue-hbuilder打包-调取摄像头或上传图片
方法一: <input type="file" accept="image/*" capture="camera" > 方法二: ...
- 数仓OLAP技术
数据应用,是真正体现数仓价值的部分,包括且又不局限于 数据可视化.BI.OLAP.即席查询,实时大屏,用户画像,推荐系统,数据分析,数据挖掘,人脸识别,风控反欺诈,ABtest等等 OLAP(On-L ...
- 一篇文章让你掌握99%的Python运算符。干货很多,建议收藏!!!
Python 中的运算符是编程中的基础概念,用于执行各种操作和数据计算.以下是一些 Python 中的主要运算符的概述: 运算符 1. 算术运算符 算术运算符语法规则 +:加法 -:减法 *:乘法 / ...
- WEB服务与NGINX(26)- 实现Nginx高并发系统内核参数优化
1. 实现Nginx高并发系统内核参数优化 由于默认的Linux内核参数考虑的是最通用场景,这明显不符合用于支持高并发访问的Web服务器的定义,所以需要修改Linux内核参数,使得Nginx可以拥有更 ...
- shape-outside
shape-outside定义一个由内容区域的外边缘封闭形成的形状 shape-outside 是一个非常实用的属性,可以实现一些比较复杂的文本环绕效果. shape-outside 的兼容性比较好, ...
- C语言:将文件中所得到的单词表保存到一个顺序表中--使用动态分配数组。
在很多时候我们想要在程序中存储想要的信息,但是又不知道该信息的大小或者说不知道需要多长的数组来存放.动态分配空间这个很好的解决了这个问题,动态分配不仅只可以用在链表中分配节点空间,其实更多时候用来分配 ...
- pageoffice 6 Vue+Springboot磁盘路径打开文档
本示例关键代码的编写位置 Vue+Springboot 注意 本文中展示的代码均为关键代码,复制粘贴到您的项目中,按照实际的情况,例如文档路径,用户名等做适当修改即可使用. 在正式的项目开发中,用户文 ...
- c# 获得变量名称
string GetVariableName<T>(Expression<Func<T>> expr) { var body = ...
- CSS操作——文本属性
1.font-style(字体样式风格) /* 属性值: normal:设置字体样式为正体.默认值. italic:设置字体样式为斜体.这是选择字体库中的斜体字. oblique:设置字体样式为斜体. ...
- QuickApp 快应用中 或 nodejs 中 API接品调用时 GBK转UTF8
请求接口地址:https://doc.quickapp.cn/features/system/fetch.html?h=fetch 第一步,安装包: npm install iconv-lite as ...