macbook苹果m1芯片训练机器学习、深度学习模型,resnet101在mnist手写数字识别上做加速,torch.device("mps")
apple的m1芯片比以往cpu芯片在机器学习加速上听说有15倍的提升,也就是可以使用apple mac训练深度学习pytorch模型!!!惊呆了
安装apple m1芯片版本的pytorch

然后使用chatGPT生成一个resnet101的训练代码,这里注意,如果网络特别轻的话是没有加速效果的,还没有cpu的计算来的快
这里要选择好设备不是"cuda"了,cuda是nvidia深度学习加速的配置
# 设置设备
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = torch.device("mps") #torch.device("cpu")
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor
from torchvision.models import resnet101
from tqdm import tqdm # 设置设备
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = torch.device("mps") #torch.device("cpu") # 加载 MNIST 数据集
train_dataset = MNIST(root="/Users/xinyuuliu/Desktop/test_python/", train=True, transform=ToTensor(), download=True)
test_dataset = MNIST(root="/Users/xinyuuliu/Desktop/test_python/", train=False, transform=ToTensor()) # 创建数据加载器
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False) # 定义 ResNet-101 模型
model = resnet101(pretrained=False)
model.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
model.fc = nn.Linear(2048, 10) # 替换最后一层全连接层
model.to(device) # 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001) # 训练和评估函数
def train(model, dataloader, optimizer, criterion):
model.train()
running_loss = 0.0
for inputs, labels in tqdm(dataloader, desc="Training"):
inputs = inputs.to(device)
labels = labels.to(device) optimizer.zero_grad() outputs = model(inputs)
loss = criterion(outputs, labels) loss.backward()
optimizer.step() running_loss += loss.item() * inputs.size(0) epoch_loss = running_loss / len(dataloader.dataset)
return epoch_loss def evaluate(model, dataloader):
model.eval()
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in tqdm(dataloader, desc="Evaluating"):
inputs = inputs.to(device)
labels = labels.to(device) outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1) total += labels.size(0)
correct += (predicted == labels).sum().item() accuracy = correct / total * 100
return accuracy # 训练和评估
num_epochs = 10 for epoch in range(num_epochs):
print(f"Epoch {epoch+1}/{num_epochs}")
train_loss = train(model, train_loader, optimizer, criterion)
print(f"Training Loss: {train_loss:.4f}") test_acc = evaluate(model, test_loader)
print(f"Test Accuracy: {test_acc:.2f}%")
结果:
在mps device上,训练时间在10分钟左右

在cpu device上,训练时间在50分钟左右,明显在mps device上速度快了5倍

macbook苹果m1芯片训练机器学习、深度学习模型,resnet101在mnist手写数字识别上做加速,torch.device("mps")的更多相关文章
- 【深度学习系列】PaddlePaddle之手写数字识别
上周在搜索关于深度学习分布式运行方式的资料时,无意间搜到了paddlepaddle,发现这个框架的分布式训练方案做的还挺不错的,想跟大家分享一下.不过呢,这块内容太复杂了,所以就简单的介绍一下padd ...
- 深度学习(一):Python神经网络——手写数字识别
声明:本文章为阅读书籍<Python神经网络编程>而来,代码与书中略有差异,书籍封面: 源码 若要本地运行,请更改源码中图片与数据集的位置,环境为 Python3.6x. 1 import ...
- mnist手写数字识别——深度学习入门项目(tensorflow+keras+Sequential模型)
前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型 ...
- 深度学习之 mnist 手写数字识别
深度学习之 mnist 手写数字识别 开始学习深度学习,先来一个手写数字的程序 import numpy as np import os import codecs import torch from ...
- 用MXnet实战深度学习之一:安装GPU版mxnet并跑一个MNIST手写数字识别
用MXnet实战深度学习之一:安装GPU版mxnet并跑一个MNIST手写数字识别 http://phunter.farbox.com/post/mxnet-tutorial1 用MXnet实战深度学 ...
- SVM学习笔记(二)----手写数字识别
引言 上一篇博客整理了一下SVM分类算法的基本理论问题,它分类的基本思想是利用最大间隔进行分类,处理非线性问题是通过核函数将特征向量映射到高维空间,从而变成线性可分的,但是运算却是在低维空间运行的.考 ...
- 【机器学习】k-近邻算法应用之手写数字识别
上篇文章简要介绍了k-近邻算法的算法原理以及一个简单的例子,今天再向大家介绍一个简单的应用,因为使用的原理大体差不多,就没有没有过多的解释. 为了具有说明性,把手写数字的图像转换为txt文件,如下图所 ...
- 深度学习之PyTorch实战(3)——实战手写数字识别
上一节,我们已经学会了基于PyTorch深度学习框架高效,快捷的搭建一个神经网络,并对模型进行训练和对参数进行优化的方法,接下来让我们牛刀小试,基于PyTorch框架使用神经网络来解决一个关于手写数字 ...
- 学习笔记CB009:人工神经网络模型、手写数字识别、多层卷积网络、词向量、word2vec
人工神经网络,借鉴生物神经网络工作原理数学模型. 由n个输入特征得出与输入特征几乎相同的n个结果,训练隐藏层得到意想不到信息.信息检索领域,模型训练合理排序模型,输入特征,文档质量.文档点击历史.文档 ...
- TensorFlow.NET机器学习入门【5】采用神经网络实现手写数字识别(MNIST)
从这篇文章开始,终于要干点正儿八经的工作了,前面都是准备工作.这次我们要解决机器学习的经典问题,MNIST手写数字识别. 首先介绍一下数据集.请首先解压:TF_Net\Asset\mnist_png. ...
随机推荐
- Spring--AOP通知类型
AOP通知类型 前置通知 通知类中的数据在原始数据的前面 后置通知 通知类中的数据在原始数据的后面 环绕通知 若是只是加一个注解: 我们需要这样做:加一个参数: 若是面对有返回值的方法,又有一点不同之 ...
- 消息队列RabbitMQ业务场景应用及解决方案
目录 0. 博客参考 1. 背景 2. 技术选型 3. 消息队列的几个常见问题 4. 代码功能开发及测试 4.1 生产者 4.2 消费者 5. 源代码 6.补充:消息的顺序性 0. 博客参考 http ...
- NEFUOJ P903字符串去星问题
Description 有一个字符串(长度小于100),要统计其中有多少个,并输出该字符串去掉后的新字符串. Input 输入数据有多组,每组1个连续的字符串; Output 在1行内输出该串内有多少 ...
- .net6的IIS发布部署
1.打开控制面板,打开程序 2.点击启动或关闭windows功能 3.在其中选择要设置的IIS功能 4.重启IIS服务 5.发布项目 6.在开始菜单搜索IIS,点击IIS管理器 7.右击网站,点击添加 ...
- 如何申请 Azure OpenAI
一.前言 众所周知 OpenAI ChatGPT 是不对中国开放的,包括香港.就最近一个月的情况来看,陆续有 API 调用被限制.大规模账号封禁.关闭注册.无法直接使用银联支付(国内信用卡)等等,使用 ...
- [GIT]指定分支下创建分支
1 解决方案 Eg: master分支下创建 $ git checkout master //切换到master分支下 $ git branch branch_tmp_A //在本地仓库创建临时分支b ...
- [Java]排序算法>交换排序>【冒泡排序】(O(N*N)/稳定/N较小/有序/顺序+链式)
1 冒泡排序 1.1 算法思想 交换排序的基本思想:两两比较待排序记录的关键字,一旦发现2个记录不满足次序要求时,则:进行交换,直到整个序列全部满足要求为止. 1.2 算法特征 属于[交换排序] 冒泡 ...
- 1.封装PageHelper实现分页
前言 这几天想着动手将一些技术融合到项目中,昨天思考了会儿,想起了我与亲戚的对话:我说:"我想将若依项目完整的实现一遍",亲戚给我反馈到"你没必要完整复现若依项目,而且你 ...
- postgresSQL Extended Query执行过程和sharding-proxy的处理
pg Extended Query PostgreSQL: Documentation: 15: 55.2. Message Flow 多个阶段,可复用 Parse → DESCRIBE statem ...
- Ubuntu系统Flameshot使用问题
Ubuntu系统Flameshot使用问题 系统:Ubuntu22.04 问题:使用Flameshot,每次都会先截取整个屏幕,提示需要先分享,再使用Flameshot的功能 安装Flameshot ...