apple的m1芯片比以往cpu芯片在机器学习加速上听说有15倍的提升,也就是可以使用apple mac训练深度学习pytorch模型!!!惊呆了

安装apple m1芯片版本的pytorch

然后使用chatGPT生成一个resnet101的训练代码,这里注意,如果网络特别轻的话是没有加速效果的,还没有cpu的计算来的快

这里要选择好设备不是"cuda"了,cuda是nvidia深度学习加速的配置

# 设置设备
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = torch.device("mps") #torch.device("cpu")

  

resnet101的训练代码,训练mnist手写数字识别,之前我还尝试了两层linear的训练代码,低估了apple 的 torch.device("mps"),这两层linear的简单神经网络完全加速不起来,还不如torch.device("cpu")快,换成了resnet101加速效果就很明显了,目测速度在mps上比cpu快了5倍左右
 
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor
from torchvision.models import resnet101
from tqdm import tqdm # 设置设备
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = torch.device("mps") #torch.device("cpu") # 加载 MNIST 数据集
train_dataset = MNIST(root="/Users/xinyuuliu/Desktop/test_python/", train=True, transform=ToTensor(), download=True)
test_dataset = MNIST(root="/Users/xinyuuliu/Desktop/test_python/", train=False, transform=ToTensor()) # 创建数据加载器
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False) # 定义 ResNet-101 模型
model = resnet101(pretrained=False)
model.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
model.fc = nn.Linear(2048, 10) # 替换最后一层全连接层
model.to(device) # 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001) # 训练和评估函数
def train(model, dataloader, optimizer, criterion):
model.train()
running_loss = 0.0
for inputs, labels in tqdm(dataloader, desc="Training"):
inputs = inputs.to(device)
labels = labels.to(device) optimizer.zero_grad() outputs = model(inputs)
loss = criterion(outputs, labels) loss.backward()
optimizer.step() running_loss += loss.item() * inputs.size(0) epoch_loss = running_loss / len(dataloader.dataset)
return epoch_loss def evaluate(model, dataloader):
model.eval()
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in tqdm(dataloader, desc="Evaluating"):
inputs = inputs.to(device)
labels = labels.to(device) outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1) total += labels.size(0)
correct += (predicted == labels).sum().item() accuracy = correct / total * 100
return accuracy # 训练和评估
num_epochs = 10 for epoch in range(num_epochs):
print(f"Epoch {epoch+1}/{num_epochs}")
train_loss = train(model, train_loader, optimizer, criterion)
print(f"Training Loss: {train_loss:.4f}") test_acc = evaluate(model, test_loader)
print(f"Test Accuracy: {test_acc:.2f}%")

  

结果:

在mps device上,训练时间在10分钟左右

在cpu device上,训练时间在50分钟左右,明显在mps device上速度快了5倍

macbook苹果m1芯片训练机器学习、深度学习模型,resnet101在mnist手写数字识别上做加速,torch.device("mps")的更多相关文章

  1. 【深度学习系列】PaddlePaddle之手写数字识别

    上周在搜索关于深度学习分布式运行方式的资料时,无意间搜到了paddlepaddle,发现这个框架的分布式训练方案做的还挺不错的,想跟大家分享一下.不过呢,这块内容太复杂了,所以就简单的介绍一下padd ...

  2. 深度学习(一):Python神经网络——手写数字识别

    声明:本文章为阅读书籍<Python神经网络编程>而来,代码与书中略有差异,书籍封面: 源码 若要本地运行,请更改源码中图片与数据集的位置,环境为 Python3.6x. 1 import ...

  3. mnist手写数字识别——深度学习入门项目(tensorflow+keras+Sequential模型)

    前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型 ...

  4. 深度学习之 mnist 手写数字识别

    深度学习之 mnist 手写数字识别 开始学习深度学习,先来一个手写数字的程序 import numpy as np import os import codecs import torch from ...

  5. 用MXnet实战深度学习之一:安装GPU版mxnet并跑一个MNIST手写数字识别

    用MXnet实战深度学习之一:安装GPU版mxnet并跑一个MNIST手写数字识别 http://phunter.farbox.com/post/mxnet-tutorial1 用MXnet实战深度学 ...

  6. SVM学习笔记(二)----手写数字识别

    引言 上一篇博客整理了一下SVM分类算法的基本理论问题,它分类的基本思想是利用最大间隔进行分类,处理非线性问题是通过核函数将特征向量映射到高维空间,从而变成线性可分的,但是运算却是在低维空间运行的.考 ...

  7. 【机器学习】k-近邻算法应用之手写数字识别

    上篇文章简要介绍了k-近邻算法的算法原理以及一个简单的例子,今天再向大家介绍一个简单的应用,因为使用的原理大体差不多,就没有没有过多的解释. 为了具有说明性,把手写数字的图像转换为txt文件,如下图所 ...

  8. 深度学习之PyTorch实战(3)——实战手写数字识别

    上一节,我们已经学会了基于PyTorch深度学习框架高效,快捷的搭建一个神经网络,并对模型进行训练和对参数进行优化的方法,接下来让我们牛刀小试,基于PyTorch框架使用神经网络来解决一个关于手写数字 ...

  9. 学习笔记CB009:人工神经网络模型、手写数字识别、多层卷积网络、词向量、word2vec

    人工神经网络,借鉴生物神经网络工作原理数学模型. 由n个输入特征得出与输入特征几乎相同的n个结果,训练隐藏层得到意想不到信息.信息检索领域,模型训练合理排序模型,输入特征,文档质量.文档点击历史.文档 ...

  10. TensorFlow.NET机器学习入门【5】采用神经网络实现手写数字识别(MNIST)

    从这篇文章开始,终于要干点正儿八经的工作了,前面都是准备工作.这次我们要解决机器学习的经典问题,MNIST手写数字识别. 首先介绍一下数据集.请首先解压:TF_Net\Asset\mnist_png. ...

随机推荐

  1. 【VSC】ERROR:GDB exited unexpectedly.

    [VSC]ERROR:GDB exited unexpectedly. 记录一次调试所遇bug的查找历程 问题描述 ERROR: GDB exited unexpectedly. Debugging ...

  2. ByteHouse MaterializedMySQL 增强优化

    更多技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,回复[1]进入官方交流群 前言 社区版 ClickHouse 推出了MaterializedMySQL数据库引擎,用于将 MySQL 中的表 ...

  3. socket与struct实战应用(传输文件)

    服务端 需求:制作一个可以接收文件的服务,操作客户端往服务端传输文件 服务端代码 import struct import socket import json import os # 1. 先起动服 ...

  4. 在Ubuntu 18.04上安装NVIDIA

    安装NVIDIA显卡驱动风险极大,新手注意. 在Ubuntu 18.04上安装NVIDIA有三种方法: 使用标准Ubuntu仓库进行自动化安装 使用PPA仓库进行自动化安装 使用官方的NVIDIA驱动 ...

  5. 在k8s(kubernetes) 上安装 ingress V1.1.0

    Ingress 公开了从集群外部到集群内服务的 HTTP 和 HTTPS 路由.流量路由由 Ingress 资源上定义的规则控制. 下面是一个将所有流量都发送到同一 Service 的简单 Ingre ...

  6. 【牛客小白月赛70】A-F题解【小d和超级泡泡堂】【小d和孤独的区间】【小d的博弈】【小d和送外卖】

    比赛传送门:https://ac.nowcoder.com/acm/contest/53366 难度适中. 作者:Eriktse 简介:19岁,211计算机在读,现役ACM银牌选手力争以通俗易懂的方式 ...

  7. day13:迭代器&高阶函数(map,reduce,filter,sorted)

    迭代器 1.迭代器的定义: 能被next调用,并不断返回下一个值的对象,叫做迭代器(对象) 2.迭代器的概念: 迭代器指的是迭代取值的工具,迭代是一个重复的过程, 每次重复都是基于上一次的结果而继续的 ...

  8. day26:装饰器&面向对象当中的方法&property

    目录 1.装饰器 1.1 装饰器的基本用法 1.2 @符号的使用 1.3 装饰器的嵌套 1.4 用装饰器扩展带有参数的原函数 1.5 用装饰器扩展带有参数和返回值的原函数 1.6 用类装饰器扩展原函数 ...

  9. 使用 LoRA 和 Hugging Face 高效训练大语言模型

    在本文中,我们将展示如何使用 大语言模型低秩适配 (Low-Rank Adaptation of Large Language Models,LoRA) 技术在单 GPU 上微调 110 亿参数的 F ...

  10. AI时代下普通小程序员的想法

    在我接触了一系列AI技术后,不禁产生了许多思考.我先后尝试了AI编程.AI写论文.AI写小说.AI绘画等,最近看到了一些关于AI构建虚拟世界以及Auto-GPT的AI类新闻.在这个过程中,我心头涌现出 ...