self-attention

multi-head attention

Coursera, Deep Learning 5, Sequence Models, week4, Transformer Network的更多相关文章

  1. Coursera, Deep Learning 5, Sequence Models, week3, Sequence models & Attention mechanism

    Sequence to Sequence models basic sequence-to-sequence model: basic image-to-sequence or called imag ...

  2. Coursera, Deep Learning 5, Sequence Models, week1 Recurrent Neural Networks

    有哪些sequence model Notation: RNN - Recurrent Neural Network 传统NN 在解决sequence input 时有什么问题? RNN就没有上面的问 ...

  3. Coursera, Deep Learning 5, Sequence Models, week2, Natural Language Processing & Word Embeddings

    Word embeding 给word 加feature,用来区分word 之间的不同,或者识别word之间的相似性. 用于学习 Embeding matrix E 的数据集非常大,比如 1B - 1 ...

  4. Predicting effects of noncoding variants with deep learning–based sequence model | 基于深度学习的序列模型预测非编码区变异的影响

    Predicting effects of noncoding variants with deep learning–based sequence model PDF Interpreting no ...

  5. Coursera, Deep Learning 4, Convolutional Neural Networks - week4,

    Face recognition One Shot Learning 只看一次图片,就能以后识别, 传统deep learning 很难做到这个. 而且如果要加一个人到数据库里面,就要重新train ...

  6. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Regularization)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep ...

  7. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week2, Optimization algorithms

    Gradient descent Batch Gradient Decent, Mini-batch gradient descent, Stochastic gradient descent 还有很 ...

  8. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Gradient Checking)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. Gradient Checking Welcome to the final assignment for this week! In ...

  9. Coursera, Deep Learning 1, Neural Networks and Deep Learning - week1, Introduction to deep learning

    整个deep learing 系列课程主要包括哪些内容 Intro to Deep learning

  10. Coursera, Deep Learning 4, Convolutional Neural Networks - week1

    CNN 主要解决 computer vision 问题,同时解决input X 维度太大的问题. Edge detection 下面演示了convolution 的概念 下图的 vertical ed ...

随机推荐

  1. Windows批处理文件(.bat和.cmd)

    cmd文件和bat文件的区别 从文件描述中的区别是,cmd文件叫做:Windows命令脚本,bat文件叫:批处理文件,两者都可以使用任意一款文本编辑器进行创建.编辑和修改,只是在cmd中支持的命令要多 ...

  2. Linux Centos7搭建RabbitMQ

    下载依赖 yum -y install epel-release yum -y update 安装Erlang yum -y install erlang socat 测试安装成功 erl -vers ...

  3. DeepViT:字节提出深层ViT的训练策略 | 2021 arxiv

    作者发现深层ViT出现的注意力崩溃问题,提出了新颖的Re-attention机制来解决,计算量和内存开销都很少,在增加ViT深度时能够保持性能不断提高 来源:晓飞的算法工程笔记 公众号 论文: Dee ...

  4. Python代码学习

    1.生成四位数字字母验证码,大小写字母随机 import random if __name__ =="__main__": #四位数字字母验证码的生成 checkcode=&quo ...

  5. redis基本数据结构-有序集合

    redis基本数据结构-有序集合zset 特性 使用哈希表+跳表数据结构存储 每个元素由 分数和字段名 两部分组成 增加元素 zadd key score1 member1 [score2 membe ...

  6. npm和yarn 命令比较

    命令比较 npm init | yarn init:创建一个新包 npm run | yarn run:运行 package.json 中定义的脚本 npm test | yarn test:测试一个 ...

  7. AI/机器学习(计算机视觉/NLP)方向面试复习1

    1. 判断满二叉树 所有节点的度要么为0,要么为2,且所有的叶子节点都在最后一层. #include <iostream> using namespace std; class TreeN ...

  8. 【Java】Spring5学习

    基础环境与文档资料: 见黑马视频: https://www.bilibili.com/video/BV1P44y1N7QG 依赖坐标: <?xml version="1.0" ...

  9. 【Vue2】Axios、Async+Await、解构赋值

    Axios入门使用,Async和Await用法,解构赋值语法 <!DOCTYPE html> <html lang="en"> <head> & ...

  10. python运行报警告:Cython directive 'language_level' not set, using '3str' for now (Py3)

    相关: https://stackoverflow.com/questions/34603628/how-to-specify-python-3-source-in-cythons-setup-py ...