题目链接

https://www.luogu.com.cn/problem/P3376

题目大意

输入格式

第一行包含四个正整数 \(n,m,s,t\),分别表示点的个数、有向边的个数、源点序号、汇点序号。

接下来\(m\)行,每行包含三个正整数 \(u_i,v_i,w_i\),表示第 \(i\) 条有向边从 \(u_i\) 出发,到达 \(v_i\),边权为 \(w_i\)(即该边最大流量为 \(w_i\) )。

输出格式

一行,包含一个正整数,即为该网络的最大流。

题目解析

(待补充,咕咕咕。。。)

参考代码

\(EK\)

#include <bits/stdc++.h>
using namespace std;
const int N = 205;
const long long INF = (1LL << 32);
struct Edge{
int from, to;
long long cap, flow;
};
int n, m, s, t;
long long a[N];
int p[N];
vector <Edge> e;
vector <int> G[N]; void addEdge(int from, int to, int cap, int i)
{
e.push_back((Edge){from, to, cap, 0});
e.push_back((Edge){to, from, 0, 0});
G[from].push_back(i << 1);
G[to].push_back((i << 1)+1);
}
long long maxflow()
{
long long flow = 0;
while (1)
{
memset(a, 0, sizeof(a));
a[s] = INF;
queue <int> q;
q.push(s);
while (!q.empty())
{
int x = q.front();
q.pop();
for (int i=0; i<G[x].size(); ++i)
{
Edge &b = e[G[x][i]];
if (!a[b.to] && b.cap > b.flow)
{
p[b.to] = G[x][i];
a[b.to] = min(a[x], b.cap-b.flow);
q.push(b.to);
}
}
if (a[t]) break;
}
if (!a[t]) break;
for (int u=t; u!=s; u=e[p[u]].from)
{
e[p[u]].flow += a[t];
e[p[u]^1].flow -= a[t];
}
flow += a[t];
}
return flow;
}
int main()
{
int u, v, w;
scanf("%d%d%d%d", &n, &m, &s, &t);
for (int i=0; i<m; ++i)
{
scanf("%d%d%d", &u, &v, &w);
addEdge(u, v, w, i);
}
printf("%lld\n", maxflow());
return 0;
}

\(Dinic\)

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int INF = 2147483647;
const int N = 205;
struct Edge{
int from, to, cap, flow;
};
int cur[N], depth[N];
int n, m, s, t;
vector <Edge> e;
vector <int> G[N]; void addEdge(int u, int v, int w, int i)
{
e.push_back((Edge){u, v, w, 0});
e.push_back((Edge){v, u, 0, 0});
G[u].push_back(i);
G[v].push_back(i^1);
}
int BFS()
{
queue <int> Q;
memset(depth, 0, sizeof depth);
depth[s] = 1;
Q.push(s);
while (!Q.empty())
{
int u = Q.front(); Q.pop();
for (int i = 0; i < G[u].size(); ++i) {
Edge& b = e[G[u][i]];
if (!depth[b.to] && b.cap > b.flow)
{
depth[b.to] = depth[u] + 1;
Q.push(b.to);
}
}
}
return depth[t];
}
int DFS(int x, int a)
{
if (x == t || !a) return a;
int flow = 0;
for (int& i = cur[x]; i < G[x].size(); ++i) {
Edge& b = e[G[x][i]];
if (depth[b.to] == depth[x]+1 && b.cap > b.flow)
{
if (int c = DFS(b.to, min(a, b.cap - b.flow)))
{
b.flow += c;
e[G[x][i]^1].flow -= c;
flow += c;
a -= c;
if (!a) break;
}
}
}
return flow;
}
ll maxFlow_Dinic()
{
ll ans = 0;
while (BFS()) {
memset(cur, 0, sizeof cur);
ans += DFS(s, INF);
}
return ans;
}
int main()
{
scanf("%d%d%d%d", &n, &m, &s, &t);
for (int i = 0; i < m; ++i) {
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
addEdge(u, v, w, i << 1);
}
printf("%lld\n", maxFlow_Dinic());
return 0;
}

\(ISAP\)

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 205;
const int INF = 2147483647;
struct Edge {
int from, to, cap, flow;
};
int n, m, s, t, cnt, gap[N], cur[N], dep[N];
vector <int> G[N];
vector <Edge> e; void addEdge(int u, int v, int w, int i)
{
e.push_back((Edge){u, v, w, 0});
e.push_back((Edge){v, u, 0, 0});
G[u].push_back(i);
G[v].push_back(i^1);
}
void init()
{
memset(gap, 0, sizeof gap);
memset(cur, 0, sizeof cur);
memset(dep, 0, sizeof dep);
++gap[dep[t] = 1];
queue <int> Q;
Q.push(t);
while (!Q.empty()) {
int x=Q.front(); Q.pop();
for (int i = 0; i < G[x].size(); i++)
{
int v = e[G[x][i]].to;
if (!dep[v])
{
++gap[dep[v] = dep[x]+1];
Q.push(v);
}
}
}
}
int augment(int x, int a)
{
if (x == t || !a) return a;
int flow = 0;
for (int &i=cur[x]; i < G[x].size(); i++)
{
Edge& b = e[G[x][i]];
if (dep[x] == dep[b.to] + 1 && b.cap > b.flow) {
int tmp = augment(b.to, min(a, b.cap - b.flow));
flow += tmp;
a -= tmp;
b.flow += tmp;
e[G[x][i]^1].flow -= tmp;
if (!a) return flow;
}
}
if (!(--gap[dep[x]])) dep[s] = cnt+1;
++gap[++dep[x]], cur[x] = 0;
return flow;
}
ll maxFlow_ISAP()
{
cnt = n; //Num_of_nodes -> cnt
init();
ll ans = 0;
while (dep[s] <= cnt) ans += augment(s, INF);
return ans;
}
int main()
{
scanf("%d%d%d%d", &n, &m, &s, &t);
for (int i = 0; i < m; i++) {
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
addEdge(u, v, w, i << 1);
}
printf("%lld\n", maxFlow_ISAP());
return 0;
}

感谢支持!

【模板】网络最大流(EK、Dinic、ISAP)(网络流)/洛谷P3376的更多相关文章

  1. 【最大流ISAP】洛谷P3376模板题

    题目描述 如题,给出一个网络图,以及其源点和汇点,求出其网络最大流. 输入输出格式 输入格式: 第一行包含四个正整数N.M.S.T,分别表示点的个数.有向边的个数.源点序号.汇点序号. 接下来M行每行 ...

  2. 网络最大流(EK)

    以前在oi中见到网络流的题都是直接跳过,由于本蒟蒻的理解能力太弱,导致网络流的学习不断推迟甚至被安排在了tarjan之后,原本计划于学习完最短路后就来学网络流的想法也随之破灭,在看完众多大佬 的博客后 ...

  3. 【洛谷 p3376】模板-网络最大流(图论)

    题目:给出一个网络图,以及其源点和汇点,求出其网络最大流. 解法:网络流Dinic算法. 1 #include<cstdio> 2 #include<cstdlib> 3 #i ...

  4. [洛谷P3376题解]网络流(最大流)的实现算法讲解与代码

    [洛谷P3376题解]网络流(最大流)的实现算法讲解与代码 更坏的阅读体验 定义 对于给定的一个网络,有向图中每个的边权表示可以通过的最大流量.假设出发点S水流无限大,求水流到终点T后的最大流量. 起 ...

  5. 洛谷P3376【模板】网络最大流 ISAP

    这篇博客写得非常好呀. 传送门 于是我是DCOI这一届第一个网络流写ISAP的人了,之后不用再被YKK她们嘲笑我用Dinic了!就是这样! 感觉ISAP是会比Dinic快,只分一次层,然后不能增广了再 ...

  6. 洛谷 P3376 【【模板】网络最大流】

    题目描述 如题,给出一个网络图,以及其源点和汇点,求出其网络最大流. 输入 第一行包含四个正整数N.M.S.T,分别表示点的个数.有向边的个数.源点序号.汇点序号. 接下来M行每行包含三个正整数ui. ...

  7. 『题解』洛谷P3376 【模板】网络最大流

    Problem Portal Portal1:Luogu Description 如题,给出一个网络图,以及其源点和汇点,求出其网络最大流. Input 第一行包含四个正整数\(N,M,S,T\),分 ...

  8. 洛谷——P3376 【模板】网络最大流

    题目描述 如题,给出一个网络图,以及其源点和汇点,求出其网络最大流. 输入输出格式 输入格式: 第一行包含四个正整数N.M.S.T,分别表示点的个数.有向边的个数.源点序号.汇点序号. 接下来M行每行 ...

  9. 洛谷 P3376 【模板】网络最大流

    题目描述 如题,给出一个网络图,以及其源点和汇点,求出其网络最大流. 输入输出格式 输入格式: 第一行包含四个正整数N.M.S.T,分别表示点的个数.有向边的个数.源点序号.汇点序号. 接下来M行每行 ...

  10. 洛谷 P3376【模板】网络最大流

    题目描述 如题,给出一个网络图,以及其源点和汇点,求出其网络最大流. 输入输出格式 输入格式: 第一行包含四个正整数N.M.S.T,分别表示点的个数.有向边的个数.源点序号.汇点序号. 接下来M行每行 ...

随机推荐

  1. Spring Cache 带你飞(一)

    Spring 3.1 版本引入基于 annotation 的 cache 技术,提供了一套抽象的缓存实现方案,通过注解方式使用缓存,基于配置的方式灵活使用不同缓存组件.代码具有相当的灵活性和扩展性,本 ...

  2. objcopy使用

    objcopy - copy and translate object files:用于二进制文件的拷贝和翻译(转化) objcopy的man文件如下所示: objcopy [-F bfdname|- ...

  3. List of devices attached 没有手机设备号 解决办法

    问题: cmd下使用adb devices 没有找到手机设备,如下图 解决办法: 采用360手机助手给我们自动安装对应的手机驱动,或者去对应的手机官网下载对应的驱动,这里手机要开启调试模式 我是opp ...

  4. 一次Java线程池误用(newFixedThreadPool)引发的线上血案和总结

    一次Java线程池误用(newFixedThreadPool)引发的线上血案和总结 这是一个十分严重的线上问题 自从最近的某年某月某天起,线上服务开始变得不那么稳定(软病).在高峰期,时常有几台机器的 ...

  5. VUE的MVVM框架解析

    这篇文章主要介绍了MVVM模式中ViewModel和View.Model有什么区别?本文分别解释了它们的功能和作用,然后总结了它之间的区别,需要的朋友可以参考下 Model:很简单,就是业务逻辑相关的 ...

  6. 3组-Alpha冲刺-1/6

    一.基本情况 队名:发际线和我作队 组长博客:链接 小组人数:10 二.冲刺概况汇报 黄新成(组长) 过去两天完成了哪些任务 文字描述 组织会议,讨论了alpha冲刺的分工,确定了收集数据的渠道,为拍 ...

  7. Python基础(API接口测试)

    import flask,json,pymysql from flask import request, jsonify, Response from datetime import datetime ...

  8. 菜鸡的Java笔记 api 文档

    package 包的用法    为什么需要 package ?        为了解决类之间的重名问题        为了便于管理类:合适类位于合适的包        package 怎么用?     ...

  9. 用Docker搭建RabbitMq的普通集群和镜像集群

    普通集群:多个节点组成的普通集群,消息随机发送到其中一个节点的队列上,其他节点仅保留元数据,各个节点仅有相同的元数据,即队列结构.消费者消费消息时,会从各个节点拉取消息,如果保存消息的节点故障,则无法 ...

  10. 【CSS】水平居中和垂直居中

    水平居中和垂直居中 2019-11-12  15:35:37  by冲冲 1.水平居中 (1)父级元素是行内元素,子级元素是行内元素,子级元素水平居中 ① 设置父级元素为块级元素 display:bl ...