P2150-[NOI2015]寿司晚宴【dp】
正题
题目链接:https://www.luogu.com.cn/problem/P2150
题目大意
将\(2\sim n\)选出一些分成两个集合,要求这两个集合中没有一对数不是互质的。求方案数对\(p\)取模
\(2\leq n\leq 500,1\leq p\leq10^{10}\)
解题思路
数据小的情况我们可以把所有质数拿出来状压,但是这里\(500\)质数还是很多的,所以我们不能直接这么搞。
平时我们质因数分解能够发现\(n\)分解后最多只有一个\(>\sqrt n\)的质因子。这里\(\sqrt n\)以内的质数只有\(8\)个好像可以搞。
枚举一个大于\(8\)的质数\(x\),对于所有包含这个质因子的数两个集合中只能有一个存在,然后前\(8\)个状压,设\(f_{i,j}\)分别表示两个集合中的前\(8\)个质数拥有的集合。显然转移的时候只需要满足\(i\&j=0\)即可。
然后对于拥有同一个大质数的所有数字只能有一个集合选择,\(f0_{i,j}\)表示第一个集合选,\(f1_{i,j}\)表示第二个集合选,然后做完之后\(f_{i,j}=f0_{i,j}+f1_{i,j}-f_{i,j}\)就好了。
时间复杂度\(O(n2^{8^2})\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define ll long long
using namespace std;
const ll N=510,M=256;
ll pri[8]={2,3,5,7,11,13,17,19};
ll n,P,s[N],f[M][M],f0[M][M],f1[M][M],ans;
vector<int>p[N];
signed main()
{
scanf("%lld%lld",&n,&P);
for(ll i=2;i<=n;i++){
ll x=i;
for(ll j=0;j<8;j++)
if(x%pri[j]==0){
s[i]|=(1<<j);
while(x%pri[j]==0)x/=pri[j];
}
p[x].push_back(i);
}
f[0][0]=1;
for(ll x=1;x<=500;x++){
if(!p[x].size())continue;
for(ll y=0;y<p[x].size();y++){
if(y==0||x==1){
memcpy(f0,f,sizeof(f0));
memcpy(f1,f,sizeof(f1));
}
ll c=p[x][y];
for(ll i=255;i>=0;i--)
for(ll j=255;j>=0;j--){
if(i&j)continue;
if(!(s[c]&j))(f0[i|s[c]][j]+=f0[i][j])%=P;
if(!(s[c]&i))(f1[i][j|s[c]]+=f1[i][j])%=P;
}
if(y!=p[x].size()-1&&x!=1)continue;
for(ll i=0;i<256;i++)
for(ll j=0;j<256;j++)
f[i][j]=(f0[i][j]+f1[i][j]-f[i][j])%P;
}
}
for(ll i=0;i<256;i++)
for(ll j=0;j<256;j++)
(ans+=f[i][j])%=P;
printf("%lld\n",(ans+P)%P);
return 0;
}
P2150-[NOI2015]寿司晚宴【dp】的更多相关文章
- 洛谷$P2150\ [NOI2015]$寿司晚宴 $dp$
正解:$dp$ 解题报告: 传送门$QwQ$. 遇事不决写$dp$($bushi$.讲道理这题一看就感觉除了$dp$也没啥很好的算法能做了,于是考虑$dp$呗 先看部分分?$30pts$发现质因数个数 ...
- BZOJ 4197: [Noi2015]寿司晚宴( dp )
N^0.5以内的质数只有8个, dp(i, j, k)表示用了前i个大质数(>N^0.5), 2人选的质数(<=N^0.5)集合分别为j, k时的方案数. 转移时考虑当前的大质数p是给哪个 ...
- UOJ #129 / BZOJ 4197 / 洛谷 P2150 - [NOI2015]寿司晚宴 (状压dp+数论+容斥)
题面传送门 题意: 你有一个集合 \(S={2,3,\dots,n}\) 你要选择两个集合 \(A\) 和 \(B\),满足: \(A \subseteq S\),\(B \subseteq S\), ...
- p2150 [NOI2015]寿司晚宴
传送门 分析 我们发现对于大于$\sqrt(n)$的数每个数最多只会包含一个 所以我们把每个数按照大质数的大小从小到大排序 我们知道对于一种大质数只能被同一个人取 所以f1表示被A取,f2表示被B取 ...
- 并不对劲的bzoj4197:loj2131:uoj129:p2150:[NOI2015]寿司晚宴
题目大意 有两个集合\(S_1,S_2 \subseteq [2,n] (n\leq 500)\),且对于\(\forall x\in S_1,y\in S_2 , gcd(x,y)=1\) 求\(S ...
- [NOI2015]寿司晚宴 --- 状压DP
[NOI2015]寿司晚宴 题目描述 为了庆祝NOI的成功开幕,主办方为大家准备了一场寿司晚宴. 小G和小W作为参加NOI的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了n−1种不同的寿 ...
- 【BZOJ4197】[Noi2015]寿司晚宴 状压DP+分解质因数
[BZOJ4197][Noi2015]寿司晚宴 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴 ...
- [BZOJ4197][Noi2015]寿司晚宴
4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 412 Solved: 279[Submit][Status] ...
- [UOJ#129][BZOJ4197][Noi2015]寿司晚宴
[UOJ#129][BZOJ4197][Noi2015]寿司晚宴 试题描述 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司 ...
- BZOJ 4197: [Noi2015]寿司晚宴 状态压缩 + 01背包
4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec Memory Limit: 512 MB Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿 ...
随机推荐
- Walkthrough: Create and use your own Dynamic Link Library (C++)
参考网站:https://docs.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-dynamic-link-librar ...
- ASP.NET Core:ASP.NET Core中使用NLog记录日志
一.前言 在所有的应用程序中,日志功能是不可或缺的模块,我们可以根据日志信息进行调试.查看产生的错误信息,在ASP.NET Core中我们可以使用log4net或者NLog日志组件来实现记录日志的功能 ...
- WPF---依赖属性(二)
一.概要 我们将会通过一个简单的综合例子来阐述下依赖属性的变化. 场景:我们在一个文本框中输入一个数字,然后对应的panel中会出现对应的椭圆,椭圆的个数与输入的文本相同. 我们在MainWindow ...
- C#多线程---Event类实现线程同步
一.简介 我们使用类(.net Framework中的类,如 AutoResetEvent, Semaphore类等)的方法来实现线程同步的时候,其实内部是调用操作系统的内核对象来实现的线程同步. S ...
- 并发编程之:JMM
并发编程之:JMM 大家好,我是小黑,一个在互联网苟且偷生的农民工. 上一期给大家分享了关于Java中线程相关的一些基础知识.在关于线程终止的例子中,第一个方法讲到要想终止一个线程,可以使用标志位的方 ...
- 跟着华为,学数字化转型(8):组织转型之业务IT一体化
数字化时代,技术已经成了企业发展的重要驱动力,是转型中的企业不可或缺的力量.那采用什么样的组织结构,才能发挥出技术能力的最大价值呢?华为经历了多种组织形式,最终得出的结论是业务IT一体化组织是最合适的 ...
- 利用元数据提高 SQLFlow 血缘分析结果准确率
利用元数据提高 SQLFlow 血缘分析结果准确率 一.SQLFlow--数据治理专家的一把利器 数据血缘属于数据治理中的一个概念,是在数据溯源的过程中找到相关数据之间的联系,它是一个逻辑概念.数据治 ...
- Qt中QOpengl的QMatrix4x4矩阵作用原理以及使用方法
1.矩阵具有坐标变换的作用,例如:左乘一个旋转矩阵,实现点的坐标旋转,左乘一个平移矩阵实现,点的平移 2.一个点可以同时串联相乘几个变换矩阵,实现坐标连续变换,根据左乘规则,右边矩阵先作用于点,作用顺 ...
- RT-Thread 4.0 + STM32F407 学习笔记1
RT Thread 4.0提供了新的BSP框架 新 BSP 框架的主要特性如下: 提供多系列 BSP 模板,大大降低新 BSP 的添加难度: 每个 BSP 都配有齐全的驱动文件,开发者可以方便地使用所 ...
- 史上最详细的信号使用说明(已被收藏和N次)
Unix环境高级编程(第三版) 第10章 信号 文章目录 1. 引言 2. 信号的概念 2.1 信号操作之忽略信号 2.2 信号操作之捕捉信号 2.3 信号操作之执行系统默认操作 2.4 常见的信号 ...