莫比乌斯反演&整除分块学习笔记
整除分块
用于计算$\sum_{i=1}^n f(\lfloor{n/i} \rfloor)*i$之类的函数
整除的话其实很多函数值是一样的,对于每一块一样的商集中处理即可
若一个商的左边界为l,则右边界为$\lfloor{\frac{n}{\lfloor\frac{n}{l}\rfloor}}\rfloor$
这样时间复杂度就是$O(\sqrt{n})$
如果是类似$\sum_{i=1}^n f(\lfloor{n/i} \rfloor)*i \ opt \ f(\lfloor{m/i} \rfloor)$
就让r=$min(\lfloor{\frac{n}{\lfloor\frac{n}{l}\rfloor}}\rfloor,\lfloor{\frac{m}{\lfloor\frac{m}{l}\rfloor}}\rfloor)$
这样的话记得另$l<=min(n,m)$,否则会出现除以0的情况
莫比乌斯函数
如果n的因数中没有平方数,则$\mu n=(-1)^k$,k为n质因数的个数
否则$\mu n=0$
特别的,$\mu 1=1$
这样就可以得到一个性质:一个数所有因数的$\mu$之和等于0,除非这个数是1
证明:设m有n个质因数,则原式$=1-C_n^1+C_n^2-C_n^3...C_n^n$
结合二项式定理:原式$=(1-1)^n=0$,证毕
这个性质很常用,比如$[gcd(i,j)]=1$这类式子可以转化成$\sum_{d|gcd(i,j)} \mu(d)$
莫比乌斯反演
若$F(x)=\sum_{d|x} f(x)$
那么$f(x)=\sum_{d|x} F(d)*\mu(x/d)$
但一般而言用的更多的是莫比乌斯函数的性质
莫比乌斯反演&整除分块学习笔记的更多相关文章
- [P4450] 双亲数 - 莫比乌斯反演,整除分块
模板题-- \[\sum\limits_{i=1}^a\sum\limits_{j=1}^b[(i,j)=k] = \sum\limits_{i=1}^a\sum\limits_{j=1}^b[k|i ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...
- 洛谷 P2257 - YY的GCD(莫比乌斯反演+整除分块)
题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. ...
- [POI2007]ZAP-Queries (莫比乌斯反演+整除分块)
[POI2007]ZAP-Queries \(solution:\) 唉,数论实在有点烂了,昨天还会的,今天就不会了,周末刚证明的,今天全忘了,还不如早点写好题解. 这题首先我们可以列出来答案就是: ...
- 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块
https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...
- [国家集训队] Crash的数字表格 - 莫比乌斯反演,整除分块
考虑到\(lcm(i,j)=\frac{ij}{gcd(i,j)}\) \(\sum_{i=1}^n\sum_{j=1}^m\frac{ij}{gcd(i,j)}\) \(\sum_{d=1}^{n} ...
- 洛谷 P5518 - [MtOI2019]幽灵乐团 / 莫比乌斯反演基础练习题(莫比乌斯反演+整除分块)
洛谷题面传送门 一道究极恶心的毒瘤六合一题,式子推了我满满两面 A4 纸-- 首先我们可以将式子拆成: \[ans=\prod\limits_{i=1}^A\prod\limits_{j=1}^B\p ...
- P2568 莫比乌斯反演+整除分块
#include<bits/stdc++.h> #define LL long long using namespace std; ; bool vis[maxn]; int prime[ ...
随机推荐
- 使用allure工具生成测试报告(基于pytest框架)
一.allure简介:一个轻量级的,灵活的,支持多语言,多平台的开源report框架 Allure基于标准的xUnit结果输出,但是添加了一些补充数据.任何报告都是通过两个步骤生成的.在测试执行期间( ...
- Task06:综合练习
练习一: 各部门工资最高的员工(难度:中等) 创建Employee 表,包含所有员工信息,每个员工有其对应的 Id, salary 和 department Id. +----+-------+--- ...
- CyclicBarrier 原理(秒懂)
疯狂创客圈 经典图书 : <Netty Zookeeper Redis 高并发实战> 面试必备 + 面试必备 + 面试必备 [博客园总入口 ] 疯狂创客圈 经典图书 : <Sprin ...
- 【题解】Luogu p3478 [POI2008]STA-Station 动态规划
题目描述 给出一个$N$个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大 输入输出格式 输入格式 第一行一个数$n$,表示树上共有$n$个点接下来$n-1$行,表示$n-1$条边;每行 ...
- 精通LED驱动芯片HT1632C指令与编程应用
HT1632C是一款很常用的LED(数码管或点阵)驱动芯片,虽然官方已经宣布该芯片明年(2021年)即将寿终正寝(停产),但是相同厂家生产的同系列芯片的控制方式通常是相同的(事实上,大多数LED驱动芯 ...
- 入门Kubernetes - .Net Core 运行
前言: 之前文章 对Kubernetes 的一些基础概念及在windows下的环境搭建,接下来把.Net Core 运行到Kubernetes 中,在实际的操作中,对Kubernetes 的进一步学习 ...
- javascript之强制类型转换
在javascript中,常会发生强制类型转换的情况有以下几种 字符串拼接 var a = 1; var b = a + '1'; console.log(b); //11 ==运算符 var a = ...
- VueX理解
什么是Vuex? 官方说法:Vuex 是一个专为 Vue.js应用程序开发的状态管理模式.它采用集中式存储管理应用的所有组件的状态,并以相应的规则保证状态以一种可预测的方式发生变化. 个人理解:Vue ...
- JUL 日志框架
1.JUL 简介 JUL 全称 Java Util Logging,位于java.util.logging.Logger 包.它是 java 原生的日志框架,使用时无需另外引用第三方的类库,相对其他的 ...
- Redis i/o timeout
1.背景 公司项目使用国外ucloud云,发现公司业务服务器时常连接redis服务,发生i/o timeout的问题.研发以及服务器侧查看没有异常,反馈给ucolud解决问题.所以这里做一个记录. 2 ...