莫比乌斯反演&整除分块学习笔记
整除分块
用于计算$\sum_{i=1}^n f(\lfloor{n/i} \rfloor)*i$之类的函数
整除的话其实很多函数值是一样的,对于每一块一样的商集中处理即可
若一个商的左边界为l,则右边界为$\lfloor{\frac{n}{\lfloor\frac{n}{l}\rfloor}}\rfloor$
这样时间复杂度就是$O(\sqrt{n})$
如果是类似$\sum_{i=1}^n f(\lfloor{n/i} \rfloor)*i \ opt \ f(\lfloor{m/i} \rfloor)$
就让r=$min(\lfloor{\frac{n}{\lfloor\frac{n}{l}\rfloor}}\rfloor,\lfloor{\frac{m}{\lfloor\frac{m}{l}\rfloor}}\rfloor)$
这样的话记得另$l<=min(n,m)$,否则会出现除以0的情况
莫比乌斯函数
如果n的因数中没有平方数,则$\mu n=(-1)^k$,k为n质因数的个数
否则$\mu n=0$
特别的,$\mu 1=1$
这样就可以得到一个性质:一个数所有因数的$\mu$之和等于0,除非这个数是1
证明:设m有n个质因数,则原式$=1-C_n^1+C_n^2-C_n^3...C_n^n$
结合二项式定理:原式$=(1-1)^n=0$,证毕
这个性质很常用,比如$[gcd(i,j)]=1$这类式子可以转化成$\sum_{d|gcd(i,j)} \mu(d)$
莫比乌斯反演
若$F(x)=\sum_{d|x} f(x)$
那么$f(x)=\sum_{d|x} F(d)*\mu(x/d)$
但一般而言用的更多的是莫比乌斯函数的性质
莫比乌斯反演&整除分块学习笔记的更多相关文章
- [P4450] 双亲数 - 莫比乌斯反演,整除分块
模板题-- \[\sum\limits_{i=1}^a\sum\limits_{j=1}^b[(i,j)=k] = \sum\limits_{i=1}^a\sum\limits_{j=1}^b[k|i ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...
- 洛谷 P2257 - YY的GCD(莫比乌斯反演+整除分块)
题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. ...
- [POI2007]ZAP-Queries (莫比乌斯反演+整除分块)
[POI2007]ZAP-Queries \(solution:\) 唉,数论实在有点烂了,昨天还会的,今天就不会了,周末刚证明的,今天全忘了,还不如早点写好题解. 这题首先我们可以列出来答案就是: ...
- 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块
https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...
- [国家集训队] Crash的数字表格 - 莫比乌斯反演,整除分块
考虑到\(lcm(i,j)=\frac{ij}{gcd(i,j)}\) \(\sum_{i=1}^n\sum_{j=1}^m\frac{ij}{gcd(i,j)}\) \(\sum_{d=1}^{n} ...
- 洛谷 P5518 - [MtOI2019]幽灵乐团 / 莫比乌斯反演基础练习题(莫比乌斯反演+整除分块)
洛谷题面传送门 一道究极恶心的毒瘤六合一题,式子推了我满满两面 A4 纸-- 首先我们可以将式子拆成: \[ans=\prod\limits_{i=1}^A\prod\limits_{j=1}^B\p ...
- P2568 莫比乌斯反演+整除分块
#include<bits/stdc++.h> #define LL long long using namespace std; ; bool vis[maxn]; int prime[ ...
随机推荐
- 黎曼曲面Riemann Surface
黎曼曲面Riemann Surface A Riemann surface is a surface-like configuration that covers the complex plane ...
- 狂神说JUC学习笔记(一)
狂神说JUC的原版笔记: 链接:https://pan.baidu.com/s/12zrGI4JyZhmkQh0cqEO4BA 提取码:d65c 我的笔记在狂神的笔记上增加了一些知识点或者做了些许修改 ...
- Java设计模式(5:设计模式的分类及工厂模式详解)
一.设计模式的分类 总的来说,设计模式可以分为三大类:创建型模式.结构型模式.行为型模式,具体如下图: 二.工厂模式 工厂模式分为简单工厂模式.工厂方法模式和抽象工厂模式.其中简单工厂模式并不属于23 ...
- .NET Core/.NET5/.NET6 开源项目汇总1:常用必备组件
系列目录 [已更新最新开发文章,点击查看详细] 开源项目是众多组织与个人分享的组件或项目,作者付出的心血我们是无法体会的,所以首先大家要心存感激.尊重.请严格遵守每个项目的开源协议后再使用.尊 ...
- 把axios获取到的数据渲染到列表上,使用better-scroll实现列表左右滑动
问题:axios数据请求完后,页面是有数据的,即页面看到有数据,但是better-scroll却无法滚动 原因:这是因为在数据更新前,better-scroll已经渲染完成了 解决方法:这是个异步问题 ...
- DOS命令行(5)——Windows系统的配置与管理(下)
whoami --查看当前有效用户 这个工具可以用来获取本地系统上当前用户(访问令牌)的用户名和组信息,以及相应的安全标识符(SID).声明.本地系统上当前用户的权限.登录标识符(登录 ID).例如, ...
- 利用ServletContext,实现Session动态权限变更
1.前言 很多Spring Boot应用使用了Session作为缓存,一般会在用户登录后保存用户的关键信息,如: 用户ID. 用户名. 用户token. 权限角色集合. 等等... 在管理员修改了用户 ...
- 图解 Redis | 不多说了,这就是 RDB 快照
大家好,我是小林. 虽说 Redis 是内存数据库. 但是它为数据的持久化提供了两个技术,分别是「 AOF 日志和 RDB 快照」. 这两种技术都会用各用一个日志文件来记录信息,但是记录的内容是不同的 ...
- .NET解密得到UnionID
由于微信没有提供.NET的解码示例代码,自己搜索写了一个,下面的代码是可用的 var decryptBytes = Convert.FromBase64String(encrypdata); var ...
- Java操作SQL数据库(JDBC)
0.引入驱动jar包 使用jdbc进行具体操作前,需要引入相关数据库的jar包, 或者使用mave管理依赖 <!-- https://mvnrepository.com/artifact/mys ...