贪心,一定在最后一次经过某节点时付出$b_{u}$,条件是付出后$W\ge \max(a_{i}-b_{i},0)$(同时也可以仅考虑这个限制,因为$W$在过程中不会增大)

假设“最后一次经过”的顺序为$p_{1},p_{2},...,p_{n}$,则要保证存在$p_{i}$到$p_{i+1}$的路径不经过$p_{1},...,p_{i-1}$,也即对于任意一个后缀,其点集的导出子图连通

倒序模拟这个过程(因为有连通的限制),二分枚举$d=W-\sum_{i=1}^{n}b_{i}$,那么可以看作从一个点($p_{n}$)开始拓展,找到相邻的$x$满足$d\ge a_{x}-b_{x}$,则可以拓展$x$(作为$p_{n-1}$),重复此过程直至拓展整张图

由于拓展只会增加$d$,因此可以贪心拓展,用优先队列维护最小的$a_{x}-b_{x}$去拓展一定最优,此时时间复杂度为$o(n^{2}\log^{2}n)$(因为要枚举$p_{n}$,还有优先队列),无法通过

仍然先枚举$p_{n}$,令$v$为$a_{v}-b_{v}$最大的位置,$G'$为删除$v$后$p_{n}$所在的连通块,从上面的过程来看,在这个贪心下,只有拓展完$G'$后才可能拓展$v$,同时当拓展完$v$后整张图一定都可以拓展

因此,合法条件变为两个:1.$G'$能拓展完;2.$G'$拓展完后$d\ge a_{v}-b_{v}$,前者是一个子问题,可以继续找到最大的$v'$来处理,直至最后$|V|=1$(即为起点)

将这个结构构成一棵树(类似点分树,只是将重心换成$a_{v}-b_{v}$最大的位置),根据上面的条件,即要求找到$a_{x}-b_{x}\le d$的位置,满足$s_{x}+d\ge a_{fa}-b_{fa}$(其中$s_{x}$为$x$子树中$b$的和)直至根

如何建出这棵树,可以从小到大枚举$a_{i}-b_{i}$,然后去合并相邻且比他小的位置作为儿子,再用并查集维护即可

由于后者的条件与起点关系不大,可以看作从根出发,找到合法且$a_{x}-b_{x}$最小的位置,判断与$d$的大小即可,此时时间复杂度为$o(n\log n)$

还可以枚举起点的位置来做到$o(n)$,即先忽略$a_{x}-b_{x}\le d$的限制,求出每一个位置上最小的$d$,记为$f_{k}$,转移为$f_{k}=\max(f_{fa},a_{fa}-b_{fa}-s_{k})$,答案为$\min_{1\le i\le n}\max(f_{i},a_{i}-b_{i})$

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 100005
4 #define ll long long
5 struct ji{
6 int nex,to;
7 }edge[N<<1];
8 vector<int>v[N];
9 int E,n,m,x,y,ans,head[N],a[N],id[N],rk[N],fa[N],f[N];
10 ll s[N];
11 bool cmp(int x,int y){
12 return a[x]<a[y];
13 }
14 void add(int x,int y){
15 edge[E].nex=head[x];
16 edge[E].to=y;
17 head[x]=E++;
18 }
19 int find(int k){
20 if (k==fa[k])return k;
21 return fa[k]=find(fa[k]);
22 }
23 void merge(int x,int y){
24 x=find(x),y=find(y);
25 if (x!=y){
26 fa[x]=y;
27 s[y]+=s[x];
28 v[y].push_back(x);
29 }
30 }
31 void dfs(int k){
32 ans=min(ans,max(f[k],a[k]));
33 for(int i=0;i<v[k].size();i++){
34 f[v[k][i]]=f[k];
35 if (a[k]>s[v[k][i]])f[v[k][i]]=max(f[k],(int)(a[k]-s[v[k][i]]));
36 dfs(v[k][i]);
37 }
38 }
39 int main(){
40 scanf("%d%d",&n,&m);
41 memset(head,-1,sizeof(head));
42 for(int i=1;i<=n;i++){
43 scanf("%d%lld",&a[i],&s[i]);
44 a[i]=max(a[i]-s[i],0LL);
45 id[i]=fa[i]=i;
46 }
47 sort(id+1,id+n+1,cmp);
48 for(int i=1;i<=n;i++)rk[id[i]]=i;
49 for(int i=1;i<=m;i++){
50 scanf("%d%d",&x,&y);
51 add(x,y);
52 add(y,x);
53 }
54 for(int i=1;i<=n;i++)
55 for(int j=head[id[i]];j!=-1;j=edge[j].nex)
56 if (rk[edge[j].to]<i)merge(edge[j].to,id[i]);
57 ans=a[id[n]];
58 dfs(id[n]);
59 printf("%lld",ans+s[id[n]]);
60 }

[atARC098F]Donation的更多相关文章

  1. 【ARC098F】Donation

    [ARC098F]Donation 题面 atcoder 题意: 给定一张\(n\)个点,\(m\)条边的无向图.这张图的每个点有两个权值 \(a_i,b_i\). 你将会从这张图中选出一个点作为起点 ...

  2. AtCoder Regular Contest 098 F.Donation

    传送门 首先,对于一个点i,进入这个点前必须大于等于Ai,每个点必须捐赠Bi 那么我们可以在每个点最后一次经过的时候再捐赠,这样显然更优 现在我们假设每个点都是最后一次经过的时候捐赠.现在我们把捐赠的 ...

  3. ARC098F Donation

    传送门 Atcoder Solution 首先是几个引理: 重新定义权值\(val_i=max(a_i-b_i,0)\),那么通过这个点必须需要\(val_i+b_i\)的钱. 多次经过一个点一定是在 ...

  4. AT4144-[ARC098D]Donation【Kruskal重构树,dp】

    正题 题目链接:https://www.luogu.com.cn/problem/AT4144 题目大意 \(n\)个点\(m\)条边的一张无向联通图,每个点有两个值\(a_i,b_i\).表示经过该 ...

  5. Entity Framework 6 Recipes 2nd Edition(12-3)译 -> 数据库连接日志

    12-3. 数据库连接日志 问题 你想为每次与数据库的连接和断开记录日志 解决方案 EF为DbContext的连接公开了一个StateChange 事件.我们需要处理这个事件, 为每次与数据库的连接和 ...

  6. Using Celery with Djang

    This document describes the current stable version of Celery (4.0). For development docs, go here. F ...

  7. 《Entity Framework 6 Recipes》中文翻译系列 (44) ------ 第八章 POCO之POCO中使用值对象和对象变更通知

    翻译的初衷以及为什么选择<Entity Framework 6 Recipes>来学习,请看本系列开篇 8-4  POCO中使用值对象(Complex Type--也叫复合类型)属性 问题 ...

  8. sublime text 3插件

    Package Control Messages Emmet emmet插件 Thank you for installing Emmet -- a toolkit that can greatly ...

  9. AAS代码第2章

    [root@node1 aas]# pwd /root/aas [root@node1 aas]# wget http://archive.apache.org/dist/spark/spark-1. ...

随机推荐

  1. python自定义翻页配置

    1.创建pager.py文件,针对翻页进行函数书写 class PageInfo(object): # current_page 当前页数 # all_count 所有行 # per_page 每页的 ...

  2. Django基础1

    一,web框架的本质 web应用的本质就是一个socket的服务端.而用户的浏览器就是一个客户端,具体事例如下: import socket sk = socket.socket() sk.bind( ...

  3. 洛谷2046 NOI2010海拔

    QwQ题目太长 这里就不复制了 题目 这个题...算是个比较经典的平面图最小割变成对偶图的最短路了QwQ 首先考虑最小割应该怎么做. 有一个性质,就是每个点的海拔要么是1,要么是0 QwQ不过这个我不 ...

  4. CentOS 文本编辑器

    目录 1.Nano 1.1.基础命令 1.2.快捷操作 1.3.配置文件 2.Vim 2.1.四大模式 2.2.基础命令 2.3.标准操作 2.4.高级操作 2.5.配置文件 Linux 终端的文本编 ...

  5. 【UE4 设计模式】适配器模式 Adapter Pattern

    概述 描述 将一个接口转换成客户希望的另一个接口,适配器模式使接口不兼容的那些类可以一起工作,其别名为包装器(Wrapper). 套路 Target(目标抽象类) 目标抽象类定义了客户所需要的接口,可 ...

  6. JDBC:(java database Connection) java数据库连接。

    JDBC 指 Java 数据库连接,是一种标准Java应用编程接口( JAVA API),用来连接 Java 编程语言和广泛的数据库. JDBC连接步骤: 1.先导入jar包,把jar放入到工程下并 ...

  7. mybatis自定义分页拦截器

    最近看了一下项目中代码,发现系统中使用的mybatis分页使用的是mybatis自带的分页,即使用RowBounds来进行分页,而这种分页是基于内存分页,即一次查出所有的数据,然后再返回分页需要的数据 ...

  8. 你知道如何从单片机过渡到嵌入式linux需要经历那些吗?(这个亲身体验有效)

    就现在的行业发展来看只会单片机已经不吃香了并且在薪资待遇方面来看的话单片机的收入限制性太强可能工作很多年之后发现没有了成长空间,因此逐渐转到嵌入式Linux这个方向是越来越多的人的一个选择,那么接触了 ...

  9. Python课程笔记(四)

    1.模块的导入 相当于Java的包或C语言的头文件 (1) import math s = math.sqrt(25) print(s) (2) from math import sqrt s=mat ...

  10. Qt信号与槽传递自定义数据类型——两种解决方法

    信号与槽作为qt中的核心机制,在qt应用开发中经常会用的,但是原生的信号与槽连接传参,只支持基本的数据类型,比如char,int, float,double. 如果想要在信号与槽之间传递自定义参数,比 ...