先对$n$分奇偶两种情况考虑——

$n$为奇数,显然先手希望最终产生的$x_{1}\oplus x_{2}\oplus...\oplus x_{n}=0$

对于后手,考虑构造:将最大的未被选择的$a_{k}$放在最大的$x_{t}$上,很明显除去先手的第一个以外,后手的每一次都比先手的下一次放的数大

设$a_{k}$为先手第一个取的位置,即必然有$x_{t}-a_{k}\ge \sum_{i=1}^{n}a_{i}-a_{k}-x_{t}$,即$x_{t}>\sum_{i=1}^{n}a_{i}-x_{t}$

而$x_{1}\oplus x_{2}\oplus...\oplus x_{n}=0$当且仅当$x_{t}=x_{1}\oplus x_{2}\oplus...x_{t-1}\oplus x_{t+1}...\oplus x_{n}\le \sum_{i=1}^{n}a_{i}-x_{t}<x_{t}$,因此后手必胜

$n$为偶数,显然先手希望最终产生的$x_{1}\oplus x_{2}\oplus...\oplus x_{n}>0$

对于先手,类似上述后手的构造,那么有$x_{t}\ge \sum_{i=1}^{n}a_{i}-x_{t}$

最终异或能为0的必要条件是$x_{t}=\sum_{i=1}^{n}a_{i}-x_{t}$,同时在这样的情况下,必然是$a_{i}$成对出现,后手可以模仿先手的操作使得异或为0,因此此时后手必胜

 1 #include<bits/stdc++.h>
2 using namespace std;
3 map<int,int>mat;
4 int t,n,a[100005];
5 int main(){
6 scanf("%d",&t);
7 while (t--){
8 scanf("%d",&n);
9 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
10 if (n&1)printf("Second\n");
11 else{
12 mat.clear();
13 int flag=0;
14 for(int i=1;i<=n;i++){
15 mat[a[i]]^=1;
16 flag+=2*mat[a[i]]-1;
17 }
18 if (flag)printf("First\n");
19 else printf("Second\n");
20 }
21 }
22 }

[atARC105D]Let's Play Nim的更多相关文章

  1. [LeetCode] Nim Game 尼姆游戏

    You are playing the following Nim Game with your friend: There is a heap of stones on the table, eac ...

  2. CodeForces - 662A Gambling Nim

    http://codeforces.com/problemset/problem/662/A 题目大意: 给定n(n <= 500000)张卡片,每张卡片的两个面都写有数字,每个面都有0.5的概 ...

  3. HDU 5795 A Simple Nim 打表求SG函数的规律

    A Simple Nim Problem Description   Two players take turns picking candies from n heaps,the player wh ...

  4. LeetCode 292. Nim Game

    Problem: You are playing the following Nim Game with your friend: There to stones. The one who remov ...

  5. 【SRM】518 Nim

    题意 \(K(1 \le K \le 10^9)\)堆石子,每堆石子个数不超过\(L(2 \le 50000)\),问Nim游戏中先手必败局面的数量,答案对\(10^9+7\)取模. 分析 容易得到\ ...

  6. HDU 2509 Nim博弈变形

    1.HDU 2509  2.题意:n堆苹果,两个人轮流,每次从一堆中取连续的多个,至少取一个,最后取光者败. 3.总结:Nim博弈的变形,还是不知道怎么分析,,,,看了大牛的博客. 传送门 首先给出结 ...

  7. HDU 1907 Nim博弈变形

    1.HDU 1907 2.题意:n堆糖,两人轮流,每次从任意一堆中至少取一个,最后取光者输. 3.总结:有点变形的Nim,还是不太明白,盗用一下学长的分析吧 传送门 分析:经典的Nim博弈的一点变形. ...

  8. Nim游戏

    目前有3堆石子,每堆石子个数也是任意的,双方轮流从中取出石子,规则如下:1)每一步应取走至少一枚石子:每一步只能从某一堆中取走部分或全部石子:2)如果谁不能取谁就失败. Bouton定理: 必败状态当 ...

  9. HDU 3032 Nim or not Nim (sg函数)

    加强版的NIM游戏,多了一个操作,可以将一堆石子分成两堆非空的. 数据范围太大,打出sg表后找规律. # include <cstdio> # include <cstring> ...

随机推荐

  1. Go语言核心36讲(Go语言基础知识二)--学习笔记

    02 | 命令源码文件 我们已经知道,环境变量 GOPATH 指向的是一个或多个工作区,每个工作区中都会有以代码包为基本组织形式的源码文件. 这里的源码文件又分为三种,即:命令源码文件.库源码文件和测 ...

  2. JVM详解(五)——运行时数据区-方法区

    一.概述 1.介绍 <Java虚拟机规范>中明确说明:尽管所有的方法区在逻辑上属于堆的一部分,但一些简单的实现可能不会选择去进行垃圾收集或者进行压缩.但对于HotSpot JVM而言,方法 ...

  3. 从零到熟悉,带你掌握Python len() 函数的使用

    摘要:本文为你带来如何找到长度内置数据类型的使用len() 使用len()与第三方数据类型 提供用于支持len()与用户定义的类. 本文分享自华为云社区<在 Python 中使用 len() 函 ...

  4. C#特性知识图谱-二、事件

    C#特性知识图谱-二.事件 二.事件 在事件驱动的软件系统中,符合某种预设条件的情形出现是,一个事件就会被触发. 2.1 事件三要素 事件源:激发事件的对象 事件信息:事件本身说携带的信息 事件响应者 ...

  5. 【UE4 C++ 基础知识】<7> 容器——TSet

    概述 TSet是一种快速容器类,(通常)用于在排序不重要的情况下存储唯一元素. TSet 类似于 TMap 和 TMultiMap,但有一个重要区别:TSet 是通过对元素求值的可覆盖函数,使用数据值 ...

  6. django 中的hello word 开心,通过申请博客了,,发个随笔庆祝一下~~~~~~~

    django 中的hello word! 准备:[pymsql,pycharm,django3.0.7] >>>终端中:django-admin.py startproject [项 ...

  7. 第0次 Beta Scrum Meeting

    本次会议为Beta阶段第0次Scrum Meeting会议 会议概要 会议时间:2021年5月27日 会议地点:「腾讯会议」线上进行 会议时长:1小时 会议内容简介:本次会议为Beta阶段启程会议,主 ...

  8. 2021.9.17考试总结[NOIP模拟55]

    有的考试表面上自称NOIP模拟,背地里却是绍兴一中NOI模拟 吓得我直接文件打错 T1 Skip 设状态$f_i$为最后一次选$i$在$i$时的最优解.有$f_i=max_{j<i}[f_j+a ...

  9. 万维网www与HTTP协议

    文章转自:https://blog.csdn.net/weixin_43914604/article/details/105901440 学习课程:<2019王道考研计算机网络> 学习目的 ...

  10. mybatis竟然报"Invalid value for getInt()"

    目录 背景 场景 初探 再探 结局 背景 使用mybatis遇到一个非常奇葩的问题,错误如下: Cause: org.apache.ibatis.executor.result.ResultMapEx ...