这道题有一种较为暴力的做法,对于每个点枚举所有与r2为该属性的询问并加以修改,最坏时间复杂度为o(nq),然而是可过的(97s)

发现只有当r2相同的询问数特别多时才会达到最坏时间复杂度,因此如果删除重复询问,时间复杂度降为o(nr),然而并没有显著优化(81s)

接着考虑当同一种r2的询问特别多时(大于K),可以从r1考虑,分析一下时间复杂度发现是$o(n\cdot max(K,R/K))\ge o(n\sqrt{R})$,即取$K=\sqrt{R}$,此时只要13s

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 200005
4 vector<int>v1[N],v2[N];
5 struct ji{
6 int nex,to;
7 }edge[N];
8 map<pair<int,int> ,int>mat;
9 int E,n,m,q,x,y,sum[N],a[N],b[N],f[N],ans[N],tot[N],head[N];
10 void add(int x,int y){
11 edge[E].nex=head[x];
12 edge[E].to=y;
13 head[x]=E++;
14 }
15 void dfs(int k,int fa){
16 tot[a[k]]++;
17 for(int i=0;i<v2[a[k]].size();i++){
18 x=v2[a[k]][i];
19 ans[x]+=tot[b[x]];
20 }
21 for(int i=head[k];i!=-1;i=edge[i].nex)
22 if (edge[i].to!=fa)dfs(edge[i].to,k);
23 tot[a[k]]--;
24 }
25 void dfs2(int k,int fa){
26 tot[a[k]]++;
27 for(int i=0;i<v1[a[k]].size();i++){
28 x=v1[a[k]][i];
29 ans[x]-=tot[b[x]];
30 }
31 for(int i=head[k];i!=-1;i=edge[i].nex)
32 if (edge[i].to!=fa)dfs2(edge[i].to,k);
33 for(int i=0;i<v1[a[k]].size();i++){
34 x=v1[a[k]][i];
35 ans[x]+=tot[b[x]];
36 }
37 }
38 int main(){
39 scanf("%d%d%d",&n,&m,&q);
40 memset(head,-1,sizeof(head));
41 for(int i=1;i<=n;i++){
42 if (i!=1){
43 scanf("%d",&x);
44 add(x,i);
45 }
46 scanf("%d",&a[i]);
47 sum[a[i]]++;
48 }
49 for(int i=1;i<=q;i++){
50 scanf("%d%d",&x,&y);
51 if (mat[make_pair(x,y)])f[i]=mat[make_pair(x,y)];
52 else{
53 f[i]=mat[make_pair(x,y)]=i;
54 if (sum[y]>500){
55 v1[x].push_back(i);
56 b[i]=y;
57 }
58 else{
59 v2[y].push_back(i);
60 b[i]=x;
61 }
62 }
63 }
64 dfs(1,0);
65 dfs2(1,0);
66 for(int i=1;i<=q;i++)printf("%d\n",ans[f[i]]);
67 }

[bzoj3351]Regions的更多相关文章

  1. bzoj3351:[ioi2009]Regions

    思路:首先如果颜色相同直接利用以前的答案即可,可以离线排序或是在线hash,然后考虑怎么快速统计答案. 首先如果点a是点b的祖先,那么一定有点b在以点a为根的子树的dfs序区间内的,于是先搞出dfs序 ...

  2. BZOJ3351: [ioi2009]Regions(根号分治)

    题意 题目链接 Sol 很神仙的题 我们考虑询问(a, b)(a是b的祖先),直接对b根号分治 如果b的出现次数\(< \sqrt{n}\),我们可以直接对每个b记录下与它有关的询问,这样每个询 ...

  3. 【dfs序】【二分】【主席树】【分块】bzoj3351 [ioi2009]Regions

    http://dzy493941464.sinaapp.com/archives/96 那个SIZE貌似必须设成R*R/Q?不知为啥,自己算的不是这个的说. 本机AC,线上TLE. #include& ...

  4. [LeetCode] Surrounded Regions 包围区域

    Given a 2D board containing 'X' and 'O', capture all regions surrounded by 'X'. A region is captured ...

  5. 验证LeetCode Surrounded Regions 包围区域的DFS方法

    在LeetCode中的Surrounded Regions 包围区域这道题中,我们发现用DFS方法中的最后一个条件必须是j > 1,如下面的红色字体所示,如果写成j > 0的话无法通过OJ ...

  6. Leetcode: Surrounded regions

    Given a 2D board containing 'X' and 'O', capture all regions surrounded by 'X'. A region is captured ...

  7. LEETCODE —— Surrounded Regions

    Total Accepted: 43584 Total Submissions: 284350 Difficulty: Medium Given a 2D board containing 'X' a ...

  8. [REP]AWS Regions and Availability Zones: the simplest explanation you will ever find around

    When it comes to Amazon Web Services, there are two concepts that are extremely important and spanni ...

  9. Leetcode 130. Surrounded Regions

    Given a 2D board containing 'X' and 'O' (the letter O), capture all regions surrounded by 'X'. A reg ...

随机推荐

  1. css超出隐藏显示省略号怎么设置?

    当我们在进行网页前端开发的时候,一般获取文章标题,然后一行一行的显示.但是当标题过长的时候,就会造成换行显示.还有显示部分文本信息时,如果全部显示就过于繁琐,会带来不会的网页体验感.虽然我们可以使用o ...

  2. 题解 Christmas Game

    题目传送门 题目大意 给出 \(t\) 个 \(n\) 个点 \(m\) 条边的无向图,每次可以从任意一棵树选择一条边删掉,然后该树不与根(为 \(1\) )联通的部分被删掉.不能操作的人输.问谁有必 ...

  3. C++ 与 Visual Studio 2019 和 WSL(二)

    终端 A more integrated terminal experience | Visual Studio Blog (microsoft.com) Say hello to the new V ...

  4. 使用docker部署nginx并配置https

    我只有一台服务器,但我想在这台服务器上运行多个项目,怎么办? 总不能靠加端口区分吧? 百度和Google是个好东西,于是我找到了答案,使用nginx. 通过nginx,我可以给我的一台服务器配置两个域 ...

  5. Coursera Deep Learning笔记 结构化机器学习项目 (上)

    参考:https://blog.csdn.net/red_stone1/article/details/78519599 1. 正交化(Orthogonalization) 机器学习中有许多参数.超参 ...

  6. Vue 报错Error in render: “TypeError: Cannot read properties of null (reading ‘xxx’)” found in

    前端vue报错 [Vue warn]: Error in render: "TypeError: Cannot read properties of null (reading 'name' ...

  7. 洛谷 P2680 [NOIP2015 提高组] 运输计划

    链接:P2680 题意: 在树上把一条边边权变为0使得最长给定路径最短 分析: 最大值最小可以想到二分答案,对于每一个mid,寻找所有大于mid的路径,再寻找是否存在一条边使得删去它后大于mid的路径 ...

  8. Django(71)图片处理器django-imagekit

    介绍 ImageKit是用于处理图像的Django应用程序.如果需要从原图上生成一个长宽为50x50的图像,则需要ImageKit. ImageKit附带了一系列图像处理器,用于调整大小和裁剪等常见任 ...

  9. linux 蓝牙开发调试(rtl8821cs模块)

    刚调完rtl8821cs的wifi功能,项目需要打通蓝牙配网功能. 调试过程中遇到各种问题中间几乎放弃,倒腾了几天最后还是打通了,顺便记录下过程. 通信接口:SDIO @WiFi.Uart @BT;工 ...

  10. poj 3041 Asteroids(最小点覆盖)

    题意: N*N的矩阵,有K个敌人,坐标分别是(C1,C1),.....,(Rk,Ck). 有一个武器,每发射一次,可消掉某行或某列上的所有的敌人. 问消灭所有敌人最少需要多少发. 思路: 二分建图:左 ...