[bzoj3351]Regions
这道题有一种较为暴力的做法,对于每个点枚举所有与r2为该属性的询问并加以修改,最坏时间复杂度为o(nq),然而是可过的(97s)
发现只有当r2相同的询问数特别多时才会达到最坏时间复杂度,因此如果删除重复询问,时间复杂度降为o(nr),然而并没有显著优化(81s)
接着考虑当同一种r2的询问特别多时(大于K),可以从r1考虑,分析一下时间复杂度发现是$o(n\cdot max(K,R/K))\ge o(n\sqrt{R})$,即取$K=\sqrt{R}$,此时只要13s
1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 200005
4 vector<int>v1[N],v2[N];
5 struct ji{
6 int nex,to;
7 }edge[N];
8 map<pair<int,int> ,int>mat;
9 int E,n,m,q,x,y,sum[N],a[N],b[N],f[N],ans[N],tot[N],head[N];
10 void add(int x,int y){
11 edge[E].nex=head[x];
12 edge[E].to=y;
13 head[x]=E++;
14 }
15 void dfs(int k,int fa){
16 tot[a[k]]++;
17 for(int i=0;i<v2[a[k]].size();i++){
18 x=v2[a[k]][i];
19 ans[x]+=tot[b[x]];
20 }
21 for(int i=head[k];i!=-1;i=edge[i].nex)
22 if (edge[i].to!=fa)dfs(edge[i].to,k);
23 tot[a[k]]--;
24 }
25 void dfs2(int k,int fa){
26 tot[a[k]]++;
27 for(int i=0;i<v1[a[k]].size();i++){
28 x=v1[a[k]][i];
29 ans[x]-=tot[b[x]];
30 }
31 for(int i=head[k];i!=-1;i=edge[i].nex)
32 if (edge[i].to!=fa)dfs2(edge[i].to,k);
33 for(int i=0;i<v1[a[k]].size();i++){
34 x=v1[a[k]][i];
35 ans[x]+=tot[b[x]];
36 }
37 }
38 int main(){
39 scanf("%d%d%d",&n,&m,&q);
40 memset(head,-1,sizeof(head));
41 for(int i=1;i<=n;i++){
42 if (i!=1){
43 scanf("%d",&x);
44 add(x,i);
45 }
46 scanf("%d",&a[i]);
47 sum[a[i]]++;
48 }
49 for(int i=1;i<=q;i++){
50 scanf("%d%d",&x,&y);
51 if (mat[make_pair(x,y)])f[i]=mat[make_pair(x,y)];
52 else{
53 f[i]=mat[make_pair(x,y)]=i;
54 if (sum[y]>500){
55 v1[x].push_back(i);
56 b[i]=y;
57 }
58 else{
59 v2[y].push_back(i);
60 b[i]=x;
61 }
62 }
63 }
64 dfs(1,0);
65 dfs2(1,0);
66 for(int i=1;i<=q;i++)printf("%d\n",ans[f[i]]);
67 }
[bzoj3351]Regions的更多相关文章
- bzoj3351:[ioi2009]Regions
思路:首先如果颜色相同直接利用以前的答案即可,可以离线排序或是在线hash,然后考虑怎么快速统计答案. 首先如果点a是点b的祖先,那么一定有点b在以点a为根的子树的dfs序区间内的,于是先搞出dfs序 ...
- BZOJ3351: [ioi2009]Regions(根号分治)
题意 题目链接 Sol 很神仙的题 我们考虑询问(a, b)(a是b的祖先),直接对b根号分治 如果b的出现次数\(< \sqrt{n}\),我们可以直接对每个b记录下与它有关的询问,这样每个询 ...
- 【dfs序】【二分】【主席树】【分块】bzoj3351 [ioi2009]Regions
http://dzy493941464.sinaapp.com/archives/96 那个SIZE貌似必须设成R*R/Q?不知为啥,自己算的不是这个的说. 本机AC,线上TLE. #include& ...
- [LeetCode] Surrounded Regions 包围区域
Given a 2D board containing 'X' and 'O', capture all regions surrounded by 'X'. A region is captured ...
- 验证LeetCode Surrounded Regions 包围区域的DFS方法
在LeetCode中的Surrounded Regions 包围区域这道题中,我们发现用DFS方法中的最后一个条件必须是j > 1,如下面的红色字体所示,如果写成j > 0的话无法通过OJ ...
- Leetcode: Surrounded regions
Given a 2D board containing 'X' and 'O', capture all regions surrounded by 'X'. A region is captured ...
- LEETCODE —— Surrounded Regions
Total Accepted: 43584 Total Submissions: 284350 Difficulty: Medium Given a 2D board containing 'X' a ...
- [REP]AWS Regions and Availability Zones: the simplest explanation you will ever find around
When it comes to Amazon Web Services, there are two concepts that are extremely important and spanni ...
- Leetcode 130. Surrounded Regions
Given a 2D board containing 'X' and 'O' (the letter O), capture all regions surrounded by 'X'. A reg ...
随机推荐
- 10.6.2 sendfile
1.传统Linux中 I/O 的问题 2.传统的 Linux 系统的标准 I/O 接口( read. write)是基于数据拷贝的,也就是数据都是 copy_to_user 或者 copy_from_ ...
- SpringBoot之日志注解和缓存优化
SpringBoot之日志注解和缓存优化 日志注解: 关于SpringBoot中的日志处理,在之前的文章中页写过: 点击进入 这次通过注解+Aop的方式来实现日志的输出: 首先需要定义一个注解类: @ ...
- 2.3 Core Building Blocks 核心构件
Core Building Blocks 核心构件 DDD mostly focuses on the Domain & Application Layers and ignores the ...
- Java继承、重写与重载
1.java继承 1.1概念 继承就是子类继承父类的特征和行为,使得子类对象(实例)具有父类的实例域和方法,或子类从父类继承方法,使得子类具有父类相同的行为. 继承可以使用extends和implem ...
- '\r'(回车符),'\n'(换行符)与"\r\n"
一.'\n','\r'和"\r\n" 回车\r本义是光标重新回到本行开头,r的英文return,控制字符可以写成CR,即Carriage Return(回车,carriage有&q ...
- win10安装git fatal: open /dev/null or dup failed: No such file or directory错误解决方法
原因看大家意思应该是 非即插即用驱动文件null.sys问题. 网上有很多方案.最后试了一个可行的. 替换 windows/system32/drivers/null.sys为网盘中的文件即可. 链 ...
- 混合开发框架Flutter
Flutter开发简介与其他的混合开发的对比 为什么要使用Flutter? 跨平台技术简介 Hybrid技术简介 QT简介 Flutter简介 为什么要使用Flutter? Flutter有什么优势? ...
- 攻防世界 杂项 3.神奇的Modbus
[目标] 了解modbus协议 [工具] Wireshark [分析过程] 在数据包中寻找flag就行,flag是明文形式存储. 工业设备消息传输使用modbus协议.所以我就采集了modbus的通信 ...
- 密码学基础:AES加密算法
[原创]密码学基础:AES加密算法-密码应用-看雪论坛-安全社区|安全招聘|bbs.pediy.com 目录 基础部分概述: 第一节:AES算法简介 第二节:AES算法相关数学知识 素域简介 扩展域简 ...
- AXI总线简介、ID分析、DMA、Vivado烧录、系统集成
转载:https://blog.csdn.net/CrazyUncle/article/details/89918030?depth_1-utm_source=distribute.pc_releva ...