[atARC111F]Do you like query problems
(以下修改指1和2类操作,询问指3类操作,操作指修改或询问)
注意到总方案数确定,那么不妨求出答案的期望,再乘上方案数即为答案
(这里从期望的角度考虑只是为了描述方便,并没有太大的实际意义)
设$E(t)$为对某一个位置执行$t$次修改(指对该点)后该位置的期望,通过概率去求,即设$P(t,i)$表示经过$t$次修改后为$i$的概率,那么$E(t)=\sum_{i=0}^{m-1}i\cdot P(t,i)$
初始有$P(0,0)=1$,接下来有$P(t,i)=\frac{\sum_{j=0}^{m-1}P(t,i)+mP(t-1,i)}{2m}=\frac{1}{2m}+\frac{P(t-1,i)}{2}=\frac{1}{m}-\frac{1}{m2^{t}}$($P(t,0)$系数为0,可以不考虑),代入$E(t)$,即可得$E(t)=\sum_{i=1}^{m-1}\frac{i}{m}-\frac{i}{m2^{t}}=(1-\frac{1}{2^{t}})\frac{m-1}{2}$
记$p_{i}=\frac{i(n-i+1)}{n+1\choose 2}$,即第$i$个位置被操作区间包含的概率,那么当经过$t$次修改(指全局)后,即可得第$i$个位置的期望为$h_{t,i}=\frac{m-1}{2}\sum_{j=0}^{t}{t\choose j}p_{i}^{j}(1-p_{i})^{t-j}(1-\frac{1}{2^{j}})=\frac{m-1}{2}(1-(1-\frac{p_{i}}{2})^{t})$(二项式定理合并)
(为了方便,以下记$P=1-\frac{p_{i}}{2}$,即$h_{t,i}=\frac{m-1}{2}(1-P^{t})$)
再加入查询,即经过$t$次操作后第$i$个位置的期望$g_{t,i}=\frac{\sum_{j=0}^{t}{t\choose j}(2m)^{j}h_{j,i}}{(2m+1)^{t}}$(枚举修改次数),将$h_{t,i}$代入后并化简,即可得$g_{t,i}=\frac{m-1}{2}(1-(\frac{2mP+1}{2m+1})^{t})$
考虑第$i$个位置对答案的贡献的期望,即$f_{i}=\frac{p_{i}}{2m+1}\sum_{j=1}^{q}g_{j-1,i}$(枚举产生贡献的操作编号,需要是询问且包含$i$),同样即可得$f_{i}=\frac{p_{i}(m-1)}{2(2m+1)}(q-S(\frac{2mP+1}{2m+1}))$(其中$S(k)=\sum_{i=0}^{q-1}k^{i}=\frac{k^{q}-1}{k-1}$)
最终答案即为$\sum_{i=1}^{n}f_{i}$,时间复杂度由于快速幂,需要$o(n\log_{2}n)$

1 #include<bits/stdc++.h>
2 using namespace std;
3 #define mod 998244353
4 int n,m,q,ans;
5 int ksm(int n,int m){
6 int s=n,ans=1;
7 while (m){
8 if (m&1)ans=1LL*ans*s%mod;
9 s=1LL*s*s%mod;
10 m>>=1;
11 }
12 return ans;
13 }
14 int inv(int k){
15 return ksm(k,mod-2);
16 }
17 int S(int k){
18 if (k==1)return q;
19 return 1LL*(ksm(k,q)+mod-1)*inv(k-1)%mod;
20 }
21 int main(){
22 scanf("%d%d%d",&n,&m,&q);
23 int s=inv(2*m+1);
24 for(int i=1;i<=n;i++){
25 int p=1LL*i*(n-i+1)%mod*inv(n)%mod*inv(n+1)%mod;
26 int P=mod+1-p,ss=S((2LL*m*P+1)%mod*s%mod);
27 ans=(ans+1LL*p*(m-1)%mod*s%mod*(q+mod-ss))%mod;
28 }
29 s=1LL*n*(n+1)/2%mod*(m+m+1)%mod;
30 ans=1LL*ans*ksm(s,q)%mod;
31 printf("%d",ans);
32 }
[atARC111F]Do you like query problems的更多相关文章
- hdu 5057 Argestes and Sequence(分块算法)
Argestes and Sequence Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- hdu5057 Argestes and Sequence 分块
Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Submission(s): Accepted Submiss ...
- Codeforces Round #260 (Div. 1) D. Serega and Fun 分块
D. Serega and Fun Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/455/pro ...
- Caching Best Practices--reference
reference:http://java.dzone.com/articles/caching-best-practices There is an irresistible attraction ...
- hdu 5057 Argestes and Sequence
Argestes and Sequence Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- BestCoder Round #11 (Div. 2) 题解
HDOJ5054 Alice and Bob Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/O ...
- HDU5057(分块)
Argestes and Sequence Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- CodeForces - 455D
Serega loves fun. However, everyone has fun in the unique manner. Serega has fun by solving query pr ...
- Neo4j 文档
Graph Fundamentals 基础 Basic concepts to get you going. A graph database can store any kind of data u ...
随机推荐
- Sentry 监控 - Snuba 数据中台架构(Query Processing 简介)
系列 1 分钟快速使用 Docker 上手最新版 Sentry-CLI - 创建版本 快速使用 Docker 上手 Sentry-CLI - 30 秒上手 Source Maps Sentry For ...
- 初探区块链数字加密资产标准ERC721
ERC721介绍 数字加密货币大致可以分为原生币(coin)和代币(token)两大类.前者如BTC.ETH等,拥有自己的区块链.后者如Tether.TRON.ONT等,依附于现有的区块链.市场上流通 ...
- YouTube爬虫下载
最近在想用爬虫写youtube网站下载学习视频,找了好多资料也没有有个有用的. 真不容易找到几行代码,代码实现很简单,基于youtube_dl 来之不易,仅参考 from __future__ imp ...
- 魔改swagger:knife4j的另外一种打开方式
之前公司使用了swagger作为文档管理工具,原生的swagger-ui非常丑,之后就用了开源项目 萧明 / knife4j 的swagger组件进行了swagger渲染,改造之后界面漂亮多了,操作也 ...
- python中列表和元组的区别
列表(list)特点: 1.可变类型且有序的,有索引值. 元组特点: 1.不可变类型且有序的,通过下标索引值访问 2.元组里面只有一个元素的时候该元组类型就是这个元素的类型.例如:t=(1) t的类型 ...
- 深度学习——手动实现残差网络ResNet 辛普森一家人物识别
深度学习--手动实现残差网络 辛普森一家人物识别 目标 通过深度学习,训练模型识别辛普森一家人动画中的14个角色 最终实现92%-94%的识别准确率. 数据 ResNet介绍 论文地址 https:/ ...
- MIPS流水线技术
华中科技大学 - 计算机硬件系统设计 单周期指令运行动态 Instruction Fetch Instruction Decode Execution MEM Write Back 单周期时空图 设耗 ...
- 【UE4 C++】打印字符串与输出日志
打印屏幕 默认打印屏幕 // 打印至屏幕 FString screenMessage = "(AddOnScreenDebugMessage) Hello world!"; GEn ...
- Go 语言实现 gRPC 的发布订阅模式,REST 接口和超时控制
原文链接: 测试小姐姐问我 gRPC 怎么用,我直接把这篇文章甩给了她 上篇文章 gRPC,爆赞 直接爆了,内容主要包括:简单的 gRPC 服务,流处理模式,验证器,Token 认证和证书认证. 在多 ...
- stm32f103中断学习总结
一.NVIC 介绍 NVIC 英文全称是 Nested Vectored Interrupt Controller,中文意思就是嵌套向量中断控制器,它属于 M3 内核的一个外设,控制着芯片的中断相关功 ...