注册中心ZooKeeper,Eureka,Consul,Nacos对比
简介
服务注册中心本质上是为了解耦服务提供者和服务消费者。对于任何一个微服务,原则上都应存在或者支持多个提供者,这是由微服务的分布式属性决定的。更进一步,为了支持弹性扩缩容特性,一个微服务的提供者的数量和分布往往是动态变化的,也是无法预先确定的。因此,原本在单体应用阶段常用的静态LB机制就不再适用了,需要引入额外的组件来管理微服务提供者的注册与发现,而这个组件就是服务注册中心;
CAP理论
CAP理论是分布式架构中重要理论
一致性(Consistency) (所有节点在同一时间具有相同的数据)
可用性(Availability) (保证每个请求不管成功或者失败都有响应)
分隔容忍(Partition tolerance) (系统中任意信息的丢失或失败不会影响系统的继续运作)
关于P的理解,我觉得是在整个系统中某个部分,挂掉了,或者宕机了,并不影响整个系统的运作或者说使用,
而可用性是,某个系统的某个节点挂了,但是并不影响系统的接受或者发出请求,CAP 不可能都取,只能取其中2个;
原因是如果C是第一需求的话,那么会影响A的性能,因为要数据同步,不然请求结果会有差异,但是数据同步会消耗时间,期间可用性就会降低。
如果A是第一需求,那么只要有一个服务在,就能正常接受请求,但是对与返回结果变不能保证,原因是,在分布式部署的时候,数据一致的过程不可能想切线路那么快。
再如果,同时满足一致性和可用性,那么分区容错就很难保证了,也就是单点,也是分布式的基本核心,好了,明白这些理论,就可以在相应的场景选取服务注册与发现了
服务注册中心解决方案
设计或者选型一个服务注册中心,首先要考虑的就是服务注册与发现机制。纵观当下各种主流的服务注册中心解决方案,大致可归为三类:
应用内:直接集成到应用中,依赖于应用自身完成服务的注册与发现,最典型的是Netflix提供的Eureka
应用外:把应用当成黑盒,通过应用外的某种机制将服务注册到注册中心,最小化对应用的侵入性,比如Airbnb的SmartStack,HashiCorp的Consul
DNS:将服务注册为DNS的SRV记录,严格来说,是一种特殊的应用外注册方式,SkyDNS是其中的代表;
对于第一类注册方式,除了Eureka这种一站式解决方案,还可以基于ZooKeeper或者Etcd自行实现一套服务注册机制,这在大公司比较常见,但对于小公司而言显然性价比太低。
由于DNS固有的缓存缺陷,本文不对第三类注册方式作深入探讨。
除了基本的服务注册与发现机制,从开发和运维角度,至少还要考虑如下五个方面:
测活:服务注册之后,如何对服务进行测活以保证服务的可用性?
负载均衡:当存在多个服务提供者时,如何均衡各个提供者的负载?
集成:在服务提供端或者调用端,如何集成注册中心?
运行时依赖:引入注册中心之后,对应用的运行时环境有何影响?
可用性:如何保证注册中心本身的可用性,特别是消除单点故障?
主流注册中心产品

Apache Zookeeper --> CP
与 Eureka 有所不同,Apache Zookeeper 在设计时就紧遵CP原则,即任何时候对 Zookeeper 的访问请求能得到一致的数据结果,同时系统对网络分割具备容错性,但是 Zookeeper 不能保证每次服务请求都是可达的。
从 Zookeeper 的实际应用情况来看,在使用 Zookeeper 获取服务列表时,如果此时的 Zookeeper 集群中的 Leader 宕机了,该集群就要进行 Leader 的选举,又或者 Zookeeper 集群中半数以上服务器节点不可用(例如有三个节点,如果节点一检测到节点三挂了 ,节点二也检测到节点三挂了,那这个节点才算是真的挂了),那么将无法处理该请求。所以说,Zookeeper 不能保证服务可用性。
当然,在大多数分布式环境中,尤其是涉及到数据存储的场景,数据一致性应该是首先被保证的,这也是 Zookeeper 设计紧遵CP原则的另一个原因。
但是对于服务发现来说,情况就不太一样了,针对同一个服务,即使注册中心的不同节点保存的服务提供者信息不尽相同,也并不会造成灾难性的后果。
因为对于服务消费者来说,能消费才是最重要的,消费者虽然拿到可能不正确的服务实例信息后尝试消费一下,也要胜过因为无法获取实例信息而不去消费,导致系统异常要好(淘宝的双十一,京东的618就是紧遵AP的最好参照);
当master节点因为网络故障与其他节点失去联系时,剩余节点会重新进行leader选举。问题在于,选举leader的时间太长,30~120s,而且选举期间整个zk集群都是不可用的,这就导致在选举期间注册服务瘫痪。
在云部署环境下, 因为网络问题使得zk集群失去master节点是大概率事件,虽然服务能最终恢复,但是漫长的选举事件导致注册长期不可用是不能容忍的。
Spring Cloud Eureka --> AP

Spring Cloud Netflix 在设计 Eureka 时就紧遵AP原则(尽管现在2.0发布了,但是由于其闭源的原因 ,但是目前 Ereka 1.x 任然是比较活跃的)。
Eureka Server 也可以运行多个实例来构建集群,解决单点问题,但不同于 ZooKeeper 的选举 leader 的过程,Eureka Server 采用的是Peer to Peer 对等通信。这是一种去中心化的架构,无 master/slave 之分,每一个 Peer 都是对等的。在这种架构风格中,节点通过彼此互相注册来提高可用性,每个节点需要添加一个或多个有效的 serviceUrl 指向其他节点。每个节点都可被视为其他节点的副本。
在集群环境中如果某台 Eureka Server 宕机,Eureka Client 的请求会自动切换到新的 Eureka Server 节点上,当宕机的服务器重新恢复后,Eureka 会再次将其纳入到服务器集群管理之中。当节点开始接受客户端请求时,所有的操作都会在节点间进行复制(replicate To Peer)操作,将请求复制到该 Eureka Server 当前所知的其它所有节点中。
当一个新的 Eureka Server 节点启动后,会首先尝试从邻近节点获取所有注册列表信息,并完成初始化。Eureka Server 通过 getEurekaServiceUrls() 方法获取所有的节点,并且会通过心跳契约的方式定期更新。
默认情况下,如果 Eureka Server 在一定时间内没有接收到某个服务实例的心跳(默认周期为30秒),Eureka Server 将会注销该实例(默认为90秒, eureka.instance.lease-expiration-duration-in-seconds 进行自定义配置)。
当 Eureka Server 节点在短时间内丢失过多的心跳时,那么这个节点就会进入自我保护模式。
Eureka的集群中,只要有一台Eureka还在,就能保证注册服务可用(保证可用性),只不过查到的信息可能不是最新的(不保证强一致性)。除此之外,Eureka还有一种自我保护机制,如果在15分钟内超过85%的节点都没有正常的心跳,那么Eureka就认为客户端与注册中心出现了网络故障,此时会出现以下几种情况:
1 . Eureka不再从注册表中移除因为长时间没有收到心跳而过期的服务;
2 . Eureka仍然能够接受新服务注册和查询请求,但是不会被同步到其它节点上(即保证当前节点依然可用);
3 . 当网络稳定时,当前实例新注册的信息会被同步到其它节点中;
因此,Eureka可以很好的应对因网络故障导致部分节点失去联系的情况,而不会像zookeeper那样使得整个注册服务瘫痪。
Consul
Consul 是 HashiCorp 公司推出的开源工具,用于实现分布式系统的服务发现与配置。Consul 使用 Go 语言编写,因此具有天然可移植性(支持Linux、windows和Mac OS X)。
Consul 内置了服务注册与发现框架、分布一致性协议实现、健康检查、Key/Value 存储、多数据中心方案,不再需要依赖其他工具(比如 ZooKeeper 等),使用起来也较为简单。
Consul 遵循CAP原理中的CP原则,保证了强一致性和分区容错性,且使用的是Raft算法,比zookeeper使用的Paxos算法更加简单。虽然保证了强一致性,但是可用性就相应下降了,例如服务注册的时间会稍长一些,因为 Consul 的 raft 协议要求必须过半数的节点都写入成功才认为注册成功 ;在leader挂掉了之后,重新选举出leader之前会导致Consul 服务不可用;

Consul本质上属于应用外的注册方式,但可以通过SDK简化注册流程。而服务发现恰好相反,默认依赖于SDK,但可以通过Consul Template(下文会提到)去除SDK依赖。

Consul Template
Consul,默认服务调用者需要依赖Consul SDK来发现服务,这就无法保证对应用的零侵入性。
所幸通过Consul Template,可以定时从Consul集群获取最新的服务提供者列表并刷新LB配置(比如nginx的upstream),这样对于服务调用者而言,只需要配置一个统一的服务调用地址即可
Consul强一致性(C)带来的是:
- 服务注册相比Eureka会稍慢一些。因为Consul的raft协议要求必须过半数的节点都写入成功才认为注册成功
- Leader挂掉时,重新选举期间整个consul不可用。保证了强一致性但牺牲了可用性。
Eureka保证高可用(A)和最终一致性:
1 . 服务注册相对要快,因为不需要等注册信息replicate到其他节点,也不保证注册信息是否replicate成功
2 . 当数据出现不一致时,虽然A, B上的注册信息不完全相同,但每个Eureka节点依然能够正常对外提供服务,这会出现查询服务信息时如果请求A查不到,但请求B就能查到。如此保证了可用性但牺牲了一致性。
其他方面,eureka就是个servlet程序,跑在servlet容器中; Consul则是go编写而成。
Nacos
Nacos是阿里开源的,Nacos 支持基于 DNS 和基于 RPC 的服务发现。在Spring Cloud中使用Nacos,只需要先下载 Nacos 并启动 Nacos server,Nacos只需要简单的配置就可以完成服务的注册发现。
Nacos除了服务的注册发现之外,还支持动态配置服务。动态配置服务可以让您以中心化、外部化和动态化的方式管理所有环境的应用配置和服务配置。动态配置消除了配置变更时重新部署应用和服务的需要,让配置管理变得更加高效和敏捷。配置中心化管理让实现无状态服务变得更简单,让服务按需弹性扩展变得更容易。
一句话概括就是Nacos = Spring Cloud注册中心 + Spring Cloud配置中心。
注册中心ZooKeeper,Eureka,Consul,Nacos对比的更多相关文章
- 注册中心(Eureka/Consul)
基于SpringBoot1.5.4与SpringCloud(Dalston.SR2)的SpringCloud学习博客,转载请标明出处,O(∩_∩)O谢谢 - Spring Cloud简介 Spring ...
- consul、eureka、nacos对比
consul.eureka.nacos对比 配置中心 eureka 不支持 consul 支持 但用起来偏麻烦,不太符合springBoot框架的命名风格,支持动态刷新 nacos 支持 用起来简单, ...
- 谈谈注册中心 zookeeper 和 eureka中的CP和 AP
谈谈注册中心 zookeeper 和 eureka中的CP和 AP 前言 在分布式架构中往往伴随CAP的理论.因为分布式的架构,不再使用传统的单机架构,多机为了提供可靠服务所以需要冗余数据因而会存在分 ...
- 服务注册中心:Eureka
第一章 注册中心介绍 1.1.什么是注册中心 注册中心可以说是微服务架构中的"通讯录",它记录了服务和服务地址的映射关系.在分布式系统中,服务会注册到这里,当服务需要调用其它服务时 ...
- spring cloud(学习笔记)高可用注册中心(Eureka)的实现(二)
绪论 前几天我用一种方式实现了spring cloud的高可用,达到两个注册中心,详情见spring cloud(学习笔记)高可用注册中心(Eureka)的实现(一),今天我意外发现,注册中心可以无限 ...
- 作为服务注册中心,Eureka比Zookeeper好在哪里
CAP是Consistency.Availablity和Partition Tolerance的缩写.一般的分布式系统最多满足其中两条.而Partition Tolerance是分布式系统的关键,因此 ...
- 服务注册中心,Eureka比Zookeeper好在哪里?
著名的CAP理论指出,一个分布式系统不可能同时满足C(一致性).A(可用性).和P(分区容错性).由于分区容错性P在分布式系统中必须要保证的,因此我们只能在A和C之间进行权衡. 因此: Zookeep ...
- 【Eureka】 作为服务注册中心,Eureka比Zookeeper好在哪里
著名的 CAP 理论指出,一个分布式系统不可能同时满足 C(一致性) A(可用性) 和 P(分区容错性).由于分区容错性 P 是在分布式系统中必须保证的,因此我们只能在 A 和 C 之间进行权衡. Z ...
- 作为 务注册中心,Eureka比Zookeeper好在哪里?
(1)Eureka保证的是可用性和分区容错性,Zookeeper 保证的是一致性和分区容错性 . (2)Eureka还有一种自我保护机制,如果在15分钟内超过85%的节点都没有正常的心跳,那么Eure ...
随机推荐
- postman Variables变量的详解与应用
变量 变量类型(按照作用域划分) 全局变量(全局环境里面的变量) 集合变量(请求集合里声明的变量) 自定义环境变量 数据变量(在runner时文件变量) 本地变量 变量权重类型 全局变量 < 集 ...
- 【一】kubernetes学习笔记-Pod概念
一.Pod 控制器类型 Pod概念 当一个 Pod 创建后,Pause 容器就会随着 Pod 启动,只要是有 Pod,Pause 容器就要被启动. 在同一个 Pod 里面的容器不能出现端口冲突,否则这 ...
- FPS游戏方框透视基本原理
计算机图形学基础 计算机图形学最基础的目标就是把建模时构建好的3D物体显示在2D屏幕上,这就涉及到物体在不同坐标系中坐标的转换.(物体/建模坐标系 ---------> 屏幕坐标系) 坐标系 在 ...
- 通过LinkedHashMap实现LRU算法
一.基于LinkedHashMap源码分析 方法调用流程(这里只是以put方法位例) put() -> putVal() -> afterNodeInsertion() -> rem ...
- 原生JS和jQuery创建元素的方法
jQ创建元素的方法 1.原生代码 .creatElement('tr')` .innerHTML = '<h1>加油</h1>' document.write('<h1& ...
- Envoy:经过envoy代理后获取客户端真实IP
在envoy作为前端代理时,用户ip的获取很重要,一般获取ip的方式.都是通过Header中的 X-Forward-For. X-Real-IP或 Remote addr 等属性获取,但是如果确保En ...
- [bug] vue cli 部署在 springboot中报404
复制资源时,在static目录下新建了一个static目录,估计是引起了spring解析的混乱,改为one后即可正常访问 参考 https://www.cnblogs.com/qianjinyan/p ...
- du -cs /var/lib/BackupPC/pc/10.1.60.211/目录名
# du -cs /var/lib/BackupPC/pc/10.1.60.211/7870236 /var/lib/BackupPC/pc/10.1.60.211/7870236 总用量
- Maven知识点一览
Maven 介绍和搭建 介绍 Maven是基于项目对象模型(POM),可以通过一小段描述信息来管理项目的构建,报告,和文档的软件项目管理工具. 环境搭建 网址:https://maven.apache ...
- MyBatis 映射文件详解(六)
MyBatis 配置文件类型 MyBatis配置文件有两种类型,如下: 全局配置文件(如 mybatis-config.xml) Mapper XML 映射文件(如 UserMapper.xml) 上 ...