「模拟8.21」山洞(矩阵优化DP)
暴力:
正解:
考虑循环矩阵,f[i][j]表示从i点到j点的方案数
我们发现n很小,我们预处理出n次的f[i][j]
然后在矩阵快速幂中,我们要从当前的f[i][j]*f[j][k]-->fir[i][j]
但是此时的循环为三层
我们考虑转移式子的意义在0-n次从i-j,在n+1到2×n转移至j
这样此时的j-k其实可以把他看作从0开始走j-k步本质上是一样的
然后还有一个特判,就不讲了
for(int j=0;j<n;++j)
{
ff[now][j]=(ff[now][j]+ff[last][((j-i)+n)%n])%mod;
if((((j-i)+n)%n)==(j+i)%n)continue;
ff[now][j]=(ff[now][j]+ff[last][(j+i)%n])%mod;
}
代码
1 #include<bits/stdc++.h>
2 #define int long long
3 #define MAXN 4001
4 using namespace std;
5 int c[MAXN],f[MAXN],fir[MAXN];
6 int n,m;
7 const int mod=1e9+7;
8 void cheng(int k)
9 {
10 memset(c,0,sizeof(c));
11 if(k==1)
12 {
13 for(int i=0;i<n;++i)
14 {
15 for(int j=0;j<n;++j)
16 {
17 c[(i+j)%n]=(c[(i+j)%n]+f[j]*f[i]+mod)%mod;
18 //if(i*2==(j+i)%n)continue;
19 }
20 }
21 for(int i=0;i<n;++i)f[i]=c[i]%mod;
22 }
23 else
24 {
25 for(int i=0;i<n;++i)
26 {
27 for(int j=0;j<n;++j)
28 {
29 c[(i+j)%n]=(c[(i+j)%n]+fir[j]*f[i]+mod)%mod;
30 //if(i*2==((j+i)%n))continue;
31 }
32 }
33 for(int i=0;i<n;++i)fir[i]=c[i]%mod;
34 }
35 }
36 void poww(int y)
37 {
38 fir[0]=1ll;
39 while(y)
40 {
41 if(y&1ll)cheng(2ll);
42 cheng(1ll);
43 y>>=1ll;
44 }
45 }
46 int ff[4ll][MAXN];int g[MAXN];
47 int now,last;int ans[MAXN];
48 signed main()
49 {
50 //freopen("text.in","r",stdin);
51 //freopen("1.out","w",stdout);
52 scanf("%lld%lld",&n,&m);
53 int now=1;int last=0;
54 ff[0][0]=1;
55 for(int i=1;i<=n;++i)
56 {
57 if(i>1)
58 {
59 swap(now,last);memset(ff[now],0,sizeof(ff[now]));
60 }
61 for(int j=0;j<n;++j)
62 {
63 ff[now][j]=(ff[now][j]+ff[last][((j-i)+n)%n])%mod;
64 if((((j-i)+n)%n)==(j+i)%n)continue;
65 ff[now][j]=(ff[now][j]+ff[last][(j+i)%n])%mod;
66 }
67 if(i==m%n)
68 {
69 for(int j=0;j<n;++j)
70 {
71 g[j]=ff[now][j]%mod;
72 }
73 }
74 if(i==m)
75 {
76 printf("%lld\n",ff[now][0]);
77 return 0;
78 }
79 }
80 for(int i=0;i<n;++i)
81 {
82 f[i]=ff[now][i]%mod;
83 }
84 poww(m/n);
85 for(int i=0;i<n;++i)
86 {
87 for(int j=0;j<n;++j)
88 {
89 //if(i*2==((j+i)%n))continue;
90 ans[(i+j)%n]=(ans[(i+j)%n]+(g[i]*fir[j])%mod+mod)%mod;
91 }
92 }
93 if(m%n)
94 printf("%lld\n",ans[0]%mod);
95 else printf("%lld\n",fir[0]%mod);
96 }
「模拟8.21」山洞(矩阵优化DP)的更多相关文章
- 「模拟赛20181025」御风剑术 博弈论+DP简单优化
题目描述 Yasuo 和Riven对一排\(n\)个假人开始练习.斩杀第\(i\)个假人会得到\(c_i\)个精粹.双方轮流出招,他们在练习中互相学习,所以他们的剑术越来越强.基于对方上一次斩杀的假人 ...
- 矩阵优化dp
链接:https://www.luogu.org/problemnew/show/P1939 题解: 矩阵优化dp模板题 搞清楚矩阵是怎么乘的构造一下矩阵就很简单了 代码: #include < ...
- bzoj 3120 矩阵优化DP
我的第一道需要程序建矩阵的矩阵优化DP. 题目可以将不同的p分开处理. 对于p==0 || p==1 直接是0或1 对于p>1,就要DP了.这里以p==3为例: 设dp[i][s1][s2][r ...
- HDU - 2294: Pendant(矩阵优化DP&前缀和)
On Saint Valentine's Day, Alex imagined to present a special pendant to his girl friend made by K ki ...
- [六省联考2017]组合数问题 (矩阵优化$dp$)
题目链接 Solution 矩阵优化 \(dp\). 题中给出的式子的意思就是: 求 nk 个物品中选出 mod k 为 r 的个数的物品的方案数. 考虑朴素 \(dp\) ,定义状态 \(f[i][ ...
- loj#6074. 「2017 山东一轮集训 Day6」子序列(矩阵乘法 dp)
题意 题目链接 Sol 设\(f[i][j]\)表示前\(i\)个位置中,以\(j\)为结尾的方案数. 转移的时候判断一下\(j\)是否和当前位置相同 然后发现可以用矩阵优化,可以分别求出前缀积和逆矩 ...
- 「学习笔记」单调队列优化dp
目录 算法 例题 最大子段和 题意 思路 代码 修剪草坪 题意 思路 代码 瑰丽华尔兹 题意 思路 代码 股票交易 题意 思路 代码 算法 使用单调队列优化dp 废话 对与一些dp的转移方程,我们可以 ...
- 洛谷P3193 GT考试 kmp+矩阵优化dp
题意 求\(N\)位数字序列(可以有前导0)中不出现某\(M\)位子串的个数,模\(K\). \(N<=10^9,M<=20,K<=1000\) 分析 设\(dp[i][j]\)表示 ...
- [Sdoi2017]序列计数 矩阵优化dp
题目 https://www.lydsy.com/JudgeOnline/problem.php?id=4818 思路 先考虑没有质数限制 dp是在同余系下的,所以\(f[i][j]\)表示前i个点, ...
随机推荐
- Mybatis学习之自定义持久层框架(五) 自定义持久层框架:封装CRUD操作
前言 上一篇文章我们完成了生产sqlSession的工作,与数据库的连接和创建会话的工作都已完成,今天我们可以来决定会话的内容了. 封装CRUD操作 首先我们需要创建一个SqlSession接口类,在 ...
- CLS的探索:Python如何让日志免费云化
前言 日志服务(Cloud Log Service,CLS)是腾讯云提供的一站式日志服务平台,提供了从日志采集.日志存储到日志检索,图表分析.监控告警.日志投递等多项服务,协助用户通过日志来解决业务运 ...
- IPC机制key值的各位组成
key_t ftok(const char *_pathname, int _proj_id) key值的第31~24位为ftok()第二个参数的低8位: key值的第23~16位为ftok()第一个 ...
- Jenkins 基础篇 - 任务分类
从前面的小节中我们看到在创建 Jenkins 任务的时候有好几种类型,如果你专门安装了 Maven 相关插件,可能还会有一个[构建一个 maven 项目]的任务类型,那这些任务类型究竟有何区别,以及我 ...
- Kubernetes服务pod的健康检测liveness和readiness详解
Kubernetes服务pod的健康检测liveness和readiness详解 接下来给大家讲解下在K8S上,我们如果对我们的业务服务进行健康检测. Health Check.restartPoli ...
- Iterable 和 Iterator
可以被for循环输出的为iterable (可迭代对象) 可以被next()调用并不断返回下一个数据的对象为iterator迭代器(python一切皆对象) 数据流,无法知晓其终点,只能推过next不 ...
- QTableWidget - 基础讲解(2) 样式、右键菜单、表头塌陷、多选等
转载:https://www.cnblogs.com/zhoug2020/p/3789076.html 在Qt的开发过程中,时常会用到表单(QTableWidget)这个控件,网上的资料不少,但是都是 ...
- 【转载】]基于RedHatEnterpriseLinux V7(RHEL7)下SPEC CPU 2006环境搭建以及测试流程 介绍、安装准备、安装、config文件以及运行脚本介绍
https://www.codetd.com/article/1137423 <版权声明:本文为博主原创文章,未经博主允许不得转载> 本次利用SPECCPU2006测试工具来进行Intel ...
- Win10开启移动热点
Win10开启移动热点 禁用 无线网卡 启动 无线网卡
- tail -n 13 history |awk '{print $2,$3,$4,$5,$6,$7,$8.$9,$10}'提取第2到第11列
# cat history |awk '{print $2,$3,$4,$5,$6,$7,$8.$9,$10}' # tail -n 13 history 215 systemctl stop 216 ...