QZEZTEST2021.7.27分析
T1 qzez 错误检测
题意
思路
代码
T2 qzez 比赛
题意
题面
有\(AB\)两队,每队\(n\)人,两队间进行\(n\)场比赛,每个人都要参赛,对手随机且概率均等。每人都有一个实力值,若一场比赛中两队派出队员的能力值分别为\(A_i\)和\(B_j\),那么实力值高的一队能获得\((A_i-B_j)^2\)分。求所有情况中\(A\)队分值减\(B\)队分值的平均值(原题为“期望值”)。
输入格式
第一行一个数\(n\)表示两队的人数为\(n\)。
第二行\(n\)个数,第\(i\)个数\(A_i\)表示队伍\(A\)的第\(i\)个人的实力值。
第三行\(n\)个数,第\(i\)个数\(B_i\)表示队伍\(B\)的第\(i\)个人的实力值。
输出格式
输出仅包含一个实数表示\(A\)期望赢\(B\)多少分。答案保留到小数点后一位(注意精度)。
样例输入
2
3 7
1 5
样例输出
20.0
样例解释
有两种情况:
\(3-1,7-5\),此时\(A\)队赢\(8\)分。 \(3-5,7-1\),此时\(A\)队赢\(32\)分。 综上,平均值为\(20\)分。
思路
原题的“期望值”其实就是平均值,本题和概率论无关。
从样例中,我们不难发现,本题是要求\(\dfrac{ \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} \pm(A_i-B_j)^2}{n}\)。展开完全平方公式,得到其实主要要求\(A_i^2+B_j^2-2A_iB_j\)。
分析对于每一个\(A_i\),要计算出\(\dfrac{\sum\limits_{j=1}^{n}{A_i^2+B_j^2-2A_iB_j}}{n}\),显然,把除以\(n\)放在最后输出的时候除会方便许多,那么式子就变成了\(\sum\limits_{j=1}^{n}{A_i^2+B_j^2-2A_iB_j}\),稍微变形一下就得到了\(n*A_i^2+\sum\limits_{j=1}^{n}B_j^2-2*A_i*\sum\limits_{j=1}^{n}{B_j}\)。显然,我们可以预处理出\(B\)的前缀和\(sp\)和前缀平方和\(pp\)(应该可以这么叫吧,即\(\sum\limits_{j=1}^{n}B_j^2\))。但是,我们还要注意到有\(\pm\)的存在。我们可以先对\(B\)排序(\(A\)无所谓),之后对于每个\(A_i\),二分(\(lower\)_\(bound\)即可)找到位置\(t\),使得\(A_i\ge B_t\)且\(A_i\le B_{t+1}\)即\(B_1\sim B_t\)\(A\)队赢,\(B_{t+1}\sim B_n\)\(A\)队输,即对于\(A_i\),我们的结果\(ans\)要加上\((t*A_i^2+\sum\limits_{j=1}^{t}{B_j^2}-2*A_i*\sum\limits_{j=1}^{t}{B_j})-((n-t)*A_i^2+\sum\limits_{j=t+1}^{n}{B_j^2}-2*A_i*\sum\limits_{j=t+1}^{n}{B_j})\),加上前缀和和前缀平方和得到最终结果:
\]
代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#define maxn 50005
#define ll long long
using namespace std;
ll n;
ll a[maxn],b[maxn];
ll sp[maxn],pp[maxn];
ll ansp,ansn,ans;
int main(){
scanf("%d",&n);
for(ll i=1;i<=n;i++){
scanf("%d",&a[i]);
}
for(ll i=1;i<=n;i++){
scanf("%d",&b[i]);
}
sort(a+1,a+1+n);
sort(b+1,b+1+n);
for(ll i=1;i<=n;i++){
sp[i]=sp[i-1]+b[i];
pp[i]=pp[i-1]+b[i]*b[i];
}
for(ll i=1;i<=n;i++){
ll t=lower_bound(b+1,b+1+n,a[i])-b-1;
ansp=a[i]*a[i]*t+pp[t]-2*a[i]*sp[t];
ansn=a[i]*a[i]*(n-t)+(pp[n]-pp[t])-2*a[i]*(sp[n]-sp[t]);
ans+=(ansp-ansn);
}
printf("%.1lf",(double)ans/n);
return 0;
}
T3 qzez Devoirs de maths
题意
思路
代码
T4 qzez 序列切割
题意
题面
有一长度为\(n\)的序列\(a\),要求分成\(k\)段,使得每段两端数字不互质,求最小的\(k\)值。
输入格式
第一行\(n\)
第二行空格隔开的\(n\)个数字,\(a_i\)表示第\(i\)个数字
输出格式
最少的切割个数\(k\)
样例输入
6
2 3 3 4 3 3
样例输出
2
样例解释
分成2 3 3 4$/$3 3两段,显然不唯一。
思路
显然此题为划分型\(DP\),我们设\(f_i\)为划分\(1\sim i\)可以得到的最小段数,由此可推出方程式\(f_i=\min\limits_{j=1,\gcd(i,j)>1}^{i}{f_j}+1\),就是说,把\(i,j\)划为一段,\(f_i\)等于\(f_j\)(即\(j\)之前的最佳方案)加\(i,j\)这一段(加一)。
暴力显然过不去,我们要考虑优化。发现每次寻找符合条件的所有\(j\)会浪费太多时间,所以我们注意到,只有有至少一个相同质因数的两个数才不互质,所以,对于每一个\(a_i\),我们只需要找到它的全部质因数,找到前面与它有至少一个相同质因数的数当作\(j\)就可以了。但是,这样找还是时间太长,我们不妨设\(g_i\)为有质因数\(i\)的数的最小\(f\)值,即对于所有有质因数\(i\)的数\(x\),\(g_i=min(f_x)\),这样,式子就变成了\(f_i=\min\limits_{j=prime_i}{g_j}+1\)(\(prime\)数组存全部除\(1\)以外的质因数)。
下面考虑\(g\)数组的更新,若现在的\(i\)自己成一段,\(g_{prime_i}=\min(g_{prime_i},f_{i-1})\),若\(i\)和其它一段,就不用更新了。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#define maxn 1000005
using namespace std;
int n;
int a[maxn];
int f[maxn],g[maxn];
int t=0,prime[maxn];
void findprime(int x){
t=0;
prime[++t]=x;
for(int i=2;i*i<=x;i++){
if(x%i==0){
prime[++t]=i;
prime[++t]=x/i;
}
}
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
}
memset(f,0x3f,sizeof(f));
memset(g,0x3f,sizeof(g));
f[0]=g[0]=0;
for(int i=1;i<=n;i++){
findprime(a[i]);
f[i]=f[i-1];
for(int j=1;j<=t;j++){
f[i]=min(f[i],g[prime[j]]);
}
f[i]++;
for(int j=1;j<=t;j++){
g[prime[j]]=min(g[prime[j]],f[i-1]);
}
}
printf("%d",f[n]);
return 0;
}
/*
6
2 3 3 4 3 3
*/
QZEZTEST2021.7.27分析的更多相关文章
- mysql-5.6.27源码安装及错误解决办法
wget http://mirrors.sohu.com/mysql/MySQL-5.6/mysql-5.6.27.tar.gz yum install -y cmake 当然也可以自己下载源码包安 ...
- linux篇-linux mysql5.6.27源码安装和错误解决
centos mysql5.6.27 1编译安装 先进入到文件放置的路径下 创建一个个文件 #mkdir–p /data/mysql/mysql #mkdir–p /data/mysql/mysqld ...
- .net面试(汇总2)
c#继承: base 表示当前对象基类的实例(使用base关键字可以调用基类的成员)this表示当前类的实例 在静态方法中不可以使用base和this关键字 派生类会继承基类所有的成员但是构造函数和 ...
- 经典.net面试题目
1. 简述 private. protected. public. internal 修饰符的访问权限. 答 . private : 私有成员, 在类的内部才可以访问. protected : 保 ...
- net面试题
简述 private. protected. public. internal 修饰符的访问权限.答 . private : 私有成员, 在类的内部才可以访问. protected : 保护成 ...
- .net面试题集锦
1. 简述 private. protected. public. internal 修饰符的访问权限. 答 . private : 私有成员, 在类的内部才可以访问. protected : 保护成 ...
- javascript运算符——位运算符
× 目录 [1]二进制 [2]非 [3]与[4]或[5]异或[6]左移[7]右移[8]>>>[9]应用 前面的话 位运算符是非常底层的运算,由于其很不直观,所以并不常用.但是,其速度 ...
- USACO3.1Humble Numbers[...]
题目背景 对于一给定的素数集合 S = {p1, p2, ..., pK},考虑一个正整数集合,该集合中任一元素的质因数全部属于S.这个正整数集合包括,p1.p1*p2.p1*p1.p1*p2*p3. ...
- 经典.net试题
经典.net面试题目 1. 简述 private. protected. public. internal 修饰符的访问权限. 答 . private : 私有成员, 在类的内部才可以访问. pr ...
随机推荐
- javascript 可多选的下拉框 multiselect 动态删除option值,动态添加option值,动态生成表格
首先引用一个写的很好的博客http://www.cnblogs.com/landeanfen/p/5013452.html 我使用的是bootstrap-multiselect,实现功能是 选择下拉框 ...
- APP-SECURITY-404 组件导出漏洞复现
参考资料:https://github.com/wnagzihxa1n/APP-SECURITY-404/blob/master/2.%E7%BB%84%E4%BB%B6%E5%AF%BC%E5%87 ...
- (精)题解 guP4878 [USACO05DEC] 布局
差分约束模版题 不过后三个点简直是满满的恶意qwq 这里不说做题思路(毕竟纯模板),只说几个坑点: 1. 相邻的两头牛间必须建边(这点好像luogu没有体现),例如一组数据: 4 1 1 1 4 10 ...
- 海亮NOIP集训-每日总结
[总结] xzh 2021暑假每日结 2021年7月12日 内容主题 DP,树型DP(讲解人:王修涵) 考场题目总结 T1: 考场简单想法: 算出两两点间距离,贪心,所用时间 \(1.5h\) 左右. ...
- C语言:随机数
在实际编程中,我们经常需要生成随机数,例如,贪吃蛇游戏中在随机的位置出现食物,扑克牌游戏中随机发牌.在C语言中,我们一般使用 <stdlib.h> 头文件中的 rand() 函数来生成随机 ...
- ES6新增语法(三)——面向对象
ES6中json的2个变化 简写:名字和值相同时,json可以可以简写 let a=12,b=5; let json = { a, b } console.log(json) // { a:12 , ...
- java03类与对象相关问题
1.使用类的静态字段和构造函数,可以跟踪某个类所创建对象的个数.请写一个类,在任何时候都可以向他查询"你已经创建了几个对象" 1 package 第四五周; 2 3 public ...
- php使用curl模拟post请求
废话不多说,直接上代码,做个笔记. $url="http://localhost/header_server.php"; $body = array("mobile&qu ...
- 【洛谷P2041 分裂游戏】数学+瞎蒙
分析 我们推不出n=3的图,开始猜测,答案在n>2时无解.(<-正解) AC代码 #include <bits/stdc++.h> using namespace std; i ...
- Java键盘获取数据
java录入键盘数据,整型.浮点型.布尔型.字符串. 通过导入java.util.Scanner实现各类操作 import java.util.Scanner;//导入包 public class H ...