Python数学建模系列(一):规划问题之线性规划
@
前言
Hello!小伙伴!
非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~
自我介绍 ଘ(੭ˊᵕˋ)੭
昵称:海轰
标签:程序猿|C++选手|学生
简介:因C语言结识编程,随后转入计算机专业,有幸拿过一些国奖、省奖...已保研。目前正在学习C++/Linux/Python
学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语!
初学Python 小白阶段
文章仅作为自己的学习笔记 用于知识体系建立以及复习
题不在多 学一题 懂一题
知其然 知其所以然!
本文仅从Pyhton如何解决建模问题出发
未对建模思路等进行深一步探索
线性规划
线性规划求解需要清晰两部分,目标函数(max, min) 和 约束条件 ,求解前应转化为标准形式:
样例1:求解下列线性规划问题
\]
x_1 + x_2 + x_3 = 7 \\
2x_1 - 5x_2 + x_3 >= 10\\
x_1 + 3x_2 + x_3 <= 12\\
x_1,x_2,x_3 >= 0
\end{cases}
\]
scipy库求解
涉及知识点
- optimize.linprog
Demo代码
from scipy import optimize
import numpy as np
c = np.array([2,3,-5])
A = np.array([[-2,5,-1],[1,3,1]])
B = np.array([-10,12])
Aeq = np.array([[1,1,1]])
Beq = np.array([7])
res = optimize.linprog(-c,A,B,Aeq,Beq)
res
运行结果
注:x结果为array数组,从左到右依次表示x1 x2 x3....
对很大/小的数不使用科学计数法 np.set_printoptions(suppress=True)
Demo代码
from scipy import optimize
import numpy as np
np.set_printoptions(suppress=True)
c = np.array([2,3,-5])
A = np.array([[-2,5,-1],[1,3,1]])
B = np.array([-10,12])
Aeq = np.array([[1,1,1]])
Beq = np.array([7])
res = optimize.linprog(-c,A,B,Aeq,Beq)
res
运行结果
样例2:求解下列线性规划问题
pulp库求解
设计知识点
- LpProblem(name='NoName', sense=LpMinimize)
- solve(solver=None, **kwargs)
- LpVariable(name, lowBound=None, upBound=None, cat='Continuous', e=None)
Demo代码
import pulp as pp
# 目标函数的系数
z = [2, 3, 1]
a = [[1, 4, 2], [3, 2, 0]]
b = [8,6]
aeq = [[1,2,4]]
beq = [101]
# 确定最大最小化问题,当前确定的是最大化问题
m = pp.LpProblem(sense=pp.LpMaximize)
# 定义三个变量放到列表中
x = [pp.LpVariable(f'x{i}', lowBound=0) for i in [1, 2, 3]]
# 定义目标函数,并将目标函数加入求解的问题中
m += pp.lpDot(z, x) # lpDot 用于计算点积
# 设置比较条件
for i in range(len(a)):
m += (pp.lpDot(a[i], x) >= b[i])
# 设置相等条件
for i in range(len(aeq)):
m += (pp.lpDot(aeq[i], x) == beq[i])
# 求解
m.solve()
# 输出结果
print(f'优化结果:{pp.value(m.objective)}')
print(f'参数取值:{[pp.value(var) for var in x]}')
运行结果:
注:
- 最优结果为202
- x1 = 101 x2=0 x3=0
样例3.运输问题
Demo代码
import pulp
import numpy as np
from pprint import pprint
def transportation_problem(costs, x_max, y_max):
row = len(costs)
col = len(costs[0])
prob = pulp.LpProblem('Transportation Proble',sense=pulp.LpMaximize)
var = [[pulp.LpVariable(f'x{i}{j}',lowBound=0,cat=pulp.LpInteger) for j in range(col)] for i in range(row)]
# 转为一维
flatten = lambda x:[y for l in x for y in flatten(l)] if type(x) is list else [x]
prob += pulp.lpDot(flatten(var),costs.flatten())
for i in range(row):
prob += (pulp.lpSum(var[i]) <= x_max[i])
for j in range(col):
prob += (pulp.lpSum([var[i][j] for i in range(row)]) <= y_max[j])
prob.solve()
return {'objective':pulp.value(prob.objective),'var':[[pulp.value(var[i][j]) for j in range(col)] for i in range(row)]}
costs = np.array([[500,550,630,1000,800,700],
[800,700,600,950,900,930],
[1000,960,840,650,600,700],
[1200,1040,980,860,880,780]])
max_plant = [76,88,96,40]
max_cultivation = [42,56,44,39,60,59]
res = transportation_problem(costs, max_plant, max_cultivation)
print(f'最大值为{res["objective"]}')
print("各个变量的取值为:")
pprint(res['var'])
运行结果:
说明
运行环境:Vs Code
结语
学习来源:B站及其课堂PPT,对其中代码进行了复现
链接:https://www.bilibili.com/video/BV12h411d7Dm? from=search&seid=5685064698782810720
文章仅作为学习笔记,记录从0到1的一个过程
希望对您有所帮助,如有错误欢迎小伙伴指正~
我是 海轰ଘ(੭ˊᵕˋ)੭
如果您觉得写得可以的话,请点个赞吧
谢谢支持 ️
Python数学建模系列(一):规划问题之线性规划的更多相关文章
- Python数学建模-01.新手必读
Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学 ...
- Python数学建模-02.数据导入
数据导入是所有数模编程的第一步,比你想象的更重要. 先要学会一种未必最佳,但是通用.安全.简单.好学的方法. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数据导入 ...
- Python学习笔记-PuLP库(3)线性规划实例
本节以一个实际数学建模案例,讲解 PuLP 求解线性规划问题的建模与编程. 1.问题描述 某厂生产甲乙两种饮料,每百箱甲饮料需用原料6千克.工人10名,获利10万元:每百箱乙饮料需用原料5千克.工人2 ...
- Python小白的数学建模课-05.0-1规划
0-1 规划不仅是数模竞赛中的常见题型,也具有重要的现实意义. 双十一促销中网购平台要求二选一,就是互斥的决策问题,可以用 0-1规划建模. 小白学习 0-1 规划,首先要学会识别 0-1规划,学习将 ...
- Python小白的数学建模课-03.线性规划
线性规划是很多数模培训讲的第一个算法,算法很简单,思想很深刻. 要通过线性规划问题,理解如何学习数学建模.如何选择编程算法. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛 ...
- Python小白的数学建模课-04.整数规划
整数规划与线性规划的差别只是变量的整数约束. 问题区别一点点,难度相差千万里. 选择简单通用的编程方案,让求解器去处理吧. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达 ...
- Python小白的数学建模课-A3.12 个新冠疫情数模竞赛赛题与点评
新冠疫情深刻和全面地影响着社会和生活,已经成为数学建模竞赛的背景帝. 本文收集了与新冠疫情相关的的数学建模竞赛赛题,供大家参考,欢迎收藏关注. 『Python小白的数学建模课 @ Youcans』带你 ...
- Python小白的数学建模课-07 选址问题
选址问题是要选择设施位置使目标达到最优,是数模竞赛中的常见题型. 小白不一定要掌握所有的选址问题,但要能判断是哪一类问题,用哪个模型. 进一步学习 PuLP工具包中处理复杂问题的字典格式快捷建模方法. ...
- Python小白的数学建模课-09 微分方程模型
小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文. 本文介绍微分方程模型的建模与求解,通过常微分方程.常微分方程组.高阶常微分方程 3个案例手 ...
随机推荐
- SQLITE数据库不支持远程访问
SQLITE数据库不支持远程访问 import sqlite3 conn=sqlite3.connect("dailiaq.db") cur=conn.cursor() def c ...
- Anaconda3中的python安装新模块
1.确认安装位置:D:\Anaconda3 2.进入: D:\Anaconda3\Scripts 3.pip install -i https://pypi.tuna.tsinghua.edu.cn/ ...
- Java集合Stream类filter的使用
之前的Java集合中removeIf的使用一文写了使用removeIf来实现按条件对集合进行过滤.这篇文章使用同样是JDK1.8新加入的Stream中filter方法来实现同样的效果.并且在实际项目中 ...
- [刘阳Java]_酷炫视频播放器制作_JS篇
此文章是接着上次写的<酷炫视频播放器制作_界面篇>将其完善,我们主要给大家介绍一下如何利用JS脚本来控制视频的播放.为了让大家能够保持对要完成的功能有直接的了解,我们还是将效果图附到文章里 ...
- 【LeetCode】930. 和相同的二元子数组
930. 和相同的二元子数组 知识点:数组:前缀和: 题目描述 给你一个二元数组 nums ,和一个整数 goal ,请你统计并返回有多少个和为 goal 的 非空 子数组. 子数组 是数组的一段连续 ...
- ls仅列出当前目录下的所有目录
ls -d */ -d仅列出目录本身,而不列出其中的内容 *通配符,所有的字符 /目录的标识
- Markdown 样式美化大全
Markdown 样式大全 目录 Markdown 样式大全 1. 键盘 2. 路径 3. 彩色字体背景 4. 折叠 5. 锚点链接 原生锚点1 原生锚点2 Hello Hello 6. 待办列表 7 ...
- 【LOJ 109 并查集】 并查集
题目描述 这是一道模板题. 维护一个 n 点的无向图,支持: 加入一条连接 u 和 v 的无向边 查询 u 和 v 的连通性 由于本题数据较大,因此输出的时候采用特殊的输出方式:用 0 或 1 代表每 ...
- Vue框架主要内容学习总结
Vue框架体系主要内容: 1. vue核心语法和用法: 2. vue-router--路由.路由相当于访问路径,将访问路径与vue组件映射起来.传统方式常采用超链接实现路径或页面之间的切换, 而在vu ...
- odoo里面条件写法
attrs="{'invisible': ['|', ('probability', '>', 0), ('active', '=', True)]}"/>. 写法gt ...