RKDG to shallow water equations

1.Governing Equations

\[\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} = 0
\]
\[U = \begin{bmatrix} h \cr q \end{bmatrix} \quad
F = \begin{bmatrix} q \cr gh^2/2 + q^2/h \end{bmatrix}\]

2.Discrete with DGM

\[\begin{equation} U_h = \sum{l_j U_j} \quad F_h(U) = \sum{l_j F(U_j)} \end{equation}
\]
\[\begin{equation}\int_{\Omega} l_i l_j \frac{\partial U_j}{\partial t} dx+
\int_{\Omega} l_i \frac{\partial l_j}{\partial x} F(U_j) dx= 0 \end{equation}\]
\[\begin{equation} \int_{\Omega} l_i l_j \frac{\partial U_j}{\partial t} dx +
\int_{\Omega} l_i \frac{\partial l_j}{\partial x} F(U_j) dx+
\oint_{\partial \Omega} l_i l_j (F^* - F)\cdot \vec{n} ds = 0 \end{equation}\]
\[\begin{equation} JM \frac{\partial U}{\partial t} + JMD_x F(U) + J_E M_E (F^* - F)\cdot \vec{n} = 0 \end{equation}
\]

ODE:

\[\begin{equation} \frac{\partial U}{\partial t} = -\frac{\partial r}{\partial x}D_r F(U) + \frac{J_E}{J}M^{-1} M_E (F^* - F)\cdot \vec{n}=L(U(t)) \end{equation}
\]
\[\begin{equation} rhs = -\frac{\partial r}{\partial x}D_r F(U) + \frac{J_E}{J}M^{-1} M_E (F - F^*)\cdot \vec{n}\end{equation}
\]

It is important to point out that at dry cells no flux is flow inside the elemnt. Therefor, for dry cells

\[\begin{equation} rhs = \frac{J_E}{J}M^{-1} M_E (F - F^*)\cdot \vec{n}\end{equation}
\]

3.Numerical Flux

3.1.HLL flux function

Formulations are given as

\[F^{HLL} = \left\{ \begin{matrix}
F^- \cr
\frac{S_R F^- - S_L F^+ + S_L S_R(U^+ - U^-)}{S_R S_L} \cr
F^+ \end{matrix} \right.
\begin{matrix}
S_L \geq 0 \cr
S_L < 0 < S_R \cr
S_R \leq 0
\end{matrix}\]

Wave Speed is suggested by Fraccarollo and Toro (1995)

\[S_L = min(u^- - \sqrt{gh^-}, u^* - c^*)
\]
\[S_R = min(u^+ + \sqrt{gh^+}, u^* + c^*)
\]

\(u^*\) and \(c^*\) is defined by

\[u^* = \frac{1}{2}(u^- + u^+) + \sqrt{gh^-} - \sqrt{gh^+}
\]
\[c^* = \frac{1}{2}(\sqrt{gh^-} + \sqrt{gh^+}) + \frac{1}{4}(u^- - u^+)
\]

for wet-dry interface, the wave speed is giving as

  1. left-hand dry bed
\[\begin{equation}
S_L = u^+ - 2\sqrt{g h^+} \quad S_R = u^+ + \sqrt{g h^+}
\end{equation}\]
  1. right-hand dry bed
\[\begin{equation}
S_L = u^- - \sqrt{g h^-} \quad S_R = u^- + 2\sqrt{g h^-}
\end{equation}\]
  1. both sides are dry
\[\begin{equation}
S_L = 0 \quad S_R = 0
\end{equation}\]

Noticing. 1

For flux terms, the discharge \(q^2\) is divided by water depth \(h\)

\[F = \begin{bmatrix} q \cr gh^2/2 + q^2/h \end{bmatrix}
\]

so a threadhold of water depth \(h_{flux}\) ( \(10^{-3}\)m ) is add into flux function SWEFlux.m. When \(h\) is less than \(h_{flux}\), the \(q^2/h\) is approximated to 0 as there is no flow at this node.

Noticing. 2

When defining the dry beds, another threadhold of water depth \(h_{dry}\) is used. It is convenient to deine \(h_{dry}\) equals to \(h_{flux}\).

3.2.Rotational invariance

\[T = \begin{bmatrix} 1 & 0 \cr
0 & n_x\end{bmatrix} \quad
T^{-1} = \begin{bmatrix} 1 & 0 \cr
0 & n_x\end{bmatrix}\]
\[\mathbf{F} \cdot \mathbf{n} = \mathbf{F} \cdot n_x = T^{-1}\mathbf{F}(TU)
\]

defining \(Q = TU\), the numerical flux \(\hat{\mathbf{F}}\) can be obtained through the evaluation of numerical flux \(\mathbf{F}\) by

\[\hat{\mathbf{F}} \cdot n = T^{-1}\mathbf{F}^{HLL}(Q)
\]

4.Limiter

Note: discontinuity detector from Krivodonova (2003) is not working

For better numerical stability, minmod limiter is used in limiting the discharge and elevation.

Check testing/Limiter1D/doc for more details about minmod limiter.

5. Positive preserving limiter

For the thin layer approach, a small depth ( \(h_{positive} = 10^{-3} m\)) and zeros velocity are prescribed for dry nodes.

The first step is to define wet elements. After each time step, the whole domain is calculated; If the any depth of nodes in \(\Omega_i\) is greater than \(h_{positive}\), then the element is defined as wet element, otherwise the water height of all nodes are remain unchanged.

The second step is to modify wet cells; If the depth of any nodes is less than \(h_{positive}\), then the flow rate is reset to zero and the new water depth is constructed as

\[\begin{equation}
\mathrm{M}\Pi_h h_i(x) = \theta_1 \left( h_i(x) - \bar{h}_i \right) + \bar{h}_i
\end{equation}\]

where

\[\begin{equation}
\theta_1 = min \left\{ \frac{\bar{h}_i - \xi }{\bar{h}_i - h_{min}}, 1 \right\}, \quad h_{min} = min\{ h_i (x_i) \}
\end{equation}\]

It is necessary to fulfill the restriction that the mean depth \(\bar{h}_i\) is greater than \(\xi\), i.e. \(10^{-4}\)m. In the function PositiveOperator, if the mean depth of element is less than \(\xi\), all nodes will add a small depth \(\xi - \bar{h}_i\) to re-fulfill the restriction.

At last, all values of water height at nodes with negative \(h_i(x_j) <0\) will be modified to zero and the discharge of dry nodes ( \(h_i \le h_{positive}\) ) will be reseted to zero.

6. Wet/Dry reconstruction

No special treatment is introduced in the model at the moment.

5.Numerical Test

5.1.Wet dam break

Model Setting value
channel length 1000m
dam position 500m
upstream depth 10m
downstream depth 2m
element num 400
Final Time 20s

5.2.Dry dam break

Model Setting value
channel length 1000m
dam position 500m
upstream depth 10m
downstream depth 0m
element num 400
Final Time 20s

5.3.Parabolic bowl

Model Setting value
channel length 2000m
\(h_0\) 10m
\(a\) 600m
\(B\) 5m/s
\(T\) 269s

Exact solution

\[\begin{equation}
Z(x,t) = \frac{-B^2 \mathrm{cos}(2wt) - B^2 - 4Bw \mathrm{cos}(wt)x}{4g}
\end{equation}\]
  1. \(t = T/2\)

  2. \(t = 3T/4\)

  3. \(t = T\)

1D RKDG to shallow water equations的更多相关文章

  1. 论文翻译:2018_Source localization using deep neural networks in a shallow water environment

    论文地址:https://asa.scitation.org/doi/abs/10.1121/1.5036725 深度神经网络在浅水环境中的源定位 摘要: 深度神经网络(DNNs)在表征复杂的非线性关 ...

  2. BJ2 斜率限制器

    BJ2 斜率限制器 本文介绍斜率限制器取自于 Anastasiou 与 Chan (1997)[1]研究,其所利用的斜率限制器也是 Barth 与 Jespersen 限制器的一种修正形式,并且包含一 ...

  3. 体积与边精确积分DGM方法

    Triangular DGM 1. Basis functions decomposing the domain \(\Omega\) into \(N_e\) conforming non-over ...

  4. TRANSFORM YOUR HABITS

    TRANSFORM YOUR HABITS3rd EditionNote from James Clear:I wrote Transform Your Habits to create a free ...

  5. TPO 02 - The Origins of Cetaceans

    TPO 02 - The Origins of Cetaceans It should be obvious that cetaceans[n. 鲸目动物]-whales, porpoises [n. ...

  6. 洛谷P3070 [USACO13JAN]岛游记Island Travels

    P3070 [USACO13JAN]岛游记Island Travels 题目描述 Farmer John has taken the cows to a vacation out on the oce ...

  7. BZOJ_3049_[Usaco2013 Jan]Island Travels _状压DP+BFS

    BZOJ_3049_[Usaco2013 Jan]Island Travels _状压DP+BFS Description Farmer John has taken the cows to a va ...

  8. viva correction statements

    * List of amendments| No. | Location     | Amendments                                                ...

  9. [Usaco2013 Jan]Island Travels

    Description Farmer John has taken the cows to a vacation out on the ocean! The cows are living on N ...

随机推荐

  1. 【Java虚拟机10】ClassLoader.getSystemClassLoader()流程简析

    前言 学习类加载必然离开不了sun.misc.Launcher这个类和Class.forName()这个方法. 分析ClassLoader.getSystemClassLoader()这个流程可以明白 ...

  2. VS2019 及 Visual Assist X 安装配置

    Visual Studio 2019 安装 下载 https://visualstudio.microsoft.com/zh-hans/downloads/ 安装 设置 扩大 Solution Con ...

  3. 记一次 .NET 某资讯论坛 CPU爆高分析

    大概有11天没发文了,真的不是因为懒,本想前几天抽空写,不知道为啥最近求助的朋友比较多,一天都能拿到2-3个求助dump,晚上回来就是一顿分析,有点意思的是大多朋友自己都分析了几遍或者公司多年的牛皮藓 ...

  4. Alpha-功能规格说明书

    项目 内容 这个作业属于哪个课程 2021春季软件工程(罗杰 任健) 这个作业的要求在哪里 团队项目-计划-功能规格说明书 一.引言 1. 项目简介 项目团队:删库跑路对不队 项目名称:题士 项目内容 ...

  5. 【二食堂】Beta - Scrum Meeting 9

    Scrum Meeting 9 例会时间:5.24 20:00~20:20 进度情况 组员 当前进度 今日任务 李健 1. 文本导入.保存部分未完成issue 2. 知识图谱导出的前端issue3. ...

  6. Alpha阶段发布声明

    发布声明 Alpha 1.Alpha版本功能说明 功能列表和详情图 模块 功能 展示 首页 查看首页博文,搜索博文,可供未登录用户使用 动态 查看推荐动态给未登录用户使用,登录用户可以查看关注动态.我 ...

  7. BUAA2020软工作业(一)——谈谈我和计算机的缘分

    项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 第一次作业-热身! 我在这个课程的目标是 进一步提高自己的编码能力,工程能力 这个作业在哪个具体方 ...

  8. zip和flatMap没有生效

    在Reactor 中flatMap和zip等没有生效 1.一个简单的示例代码如下: 2.示例运行结果 3.得到结论 最近在项目中使用了 Project Reactor ,但发现代码在写着写着有些地方没 ...

  9. Python中的括号()、[]、{}

    长时间不用容易混淆,仅记! 在Python语言中最常见的括号有三种,分别是:小括号().中括号[].花括号{} . Python中的小括号(): 代表tuple元祖数据类型,元祖是一种不可变序列.大多 ...

  10. 暴力尝试安卓gesture.key

    import hashlib import os import itertools f = open(r'D:\KEY\gesture.key','r') psd = f.readline() f.c ...