洛谷 P4663 - [BalticOI 2008]魔法石(dp)
A:我该是有多无聊来写这种题的题解啊
B:大概是因为这题题解区里没有题解所以我来写一篇了,说明我有高尚的济世情怀(大雾
跑题了跑题了
首先看到字典序第 \(i\) 小小可以自然地想到按位决策,也就是说从高位到低位枚举,对于每一位我们强制令它为 I,看看有多少个符合要求的字符串,如果小于 \(i\) 就将这位改为 \(1\) 并继续往下枚举。
那么怎么求有多少个符合要求的字符串呢?这时候就要用到 DP 了。显然一个字符串可以成为某个字符串的正规读法当且仅当它的字典序 \(\le\) 反串的字典序,因此我们很容易设计出一个 \(dp\) 状态:\(dp_{i,j,o,x,y}\) 表示当前决策了字符串的前 \(i\) 位和后 \(i\) 位,有 \(j\) 对 XI 相邻,\(o\) 表示反串字典序是否等于原串字典序,从前往后数第 \(i\) 位为 \(x\),从后往前数第 \(i\) 位为 \(y\) 的方案数。转移就枚举第 \(i+1\) 位填的数 \(u\) 和第 \(n-i\) 位填的数 \(v\),如果 \(o=1\) 且 \(u>v\) 就会导致原串字典序 \(>\) 反串字典序,不合法。否则显然有如下转移方程式子:
- \(dp_{i+1,j+[u\ne x]+[v\ne y],o\land[u==v],u,v}\leftarrow dp_{i,j,o,x,y}\)
注意特判 \(i+1=n-i\) 的情况和 \(i+2=n-i\) 的情况,对于前者而言必须有 \(u=v\),因为它俩是同一位,对于后者而言转移的第二维还需额外加上 \([u\ne v]\)。
时间复杂度 \(32n^3\),跑得飞快(
const int MAXN=60;
const char str[3]="IX";
int n,k;ll m,dp[MAXN+5][MAXN+5][2][2][2];
int lim[MAXN+5];
ll calc(){
memset(dp,0,sizeof(dp));
for(int a=0;a<2;a++) for(int b=a;b<2;b++){
if(~lim[1]&&(lim[1]^a)) continue;
if(~lim[n]&&(lim[n]^b)) continue;
dp[1][0][a==b][a][b]=1;
} ll ans=0;
for(int i=1;(i<<1|1)<=n;i++) for(int j=0;j<=k;j++)
for(int o=0;o<2;o++) for(int x=0;x<2;x++) for(int y=0;y<2;y++){
if(!dp[i][j][o][x][y]) continue;
if((i<<1|1)==n){
for(int u=0;u<2;u++){
if(~lim[i+1]&&(lim[i+1]^u)) continue;
if(j+(u^x)+(u^y)<=k) ans+=dp[i][j][o][x][y];
}
} else{
for(int u=0;u<2;u++) for(int v=0;v<2;v++){
if(~lim[i+1]&&(lim[i+1]^u)) continue;
if(~lim[n-i]&&(lim[n-i]^v)) continue;
if(o&&u>v) continue;
if((i+1<<1)==n){
if(j+(u^x)+(u^v)+(v^y)<=k) ans+=dp[i][j][o][x][y];
} else dp[i+1][j+(u^x)+(v^y)][o&&u==v][u][v]+=dp[i][j][o][x][y];
}
}
}
return ans;
}
int main(){
scanf("%d%d%lld",&n,&k,&m);
if(n==1) return ((m>2)?puts("NO SUCH STONE"):(putchar(str[m-1]))),0;
if(n==2){
if(k==0) return ((m>2)?puts("NO SUCH STONE"):(putchar(str[m-1]),putchar(str[m-1]))),0;
else return ((m>3)?puts("NO SUCH STONE"):((m&1)?(putchar(str[m>>1]),putchar(str[m>>1])):puts("IX"))),0;
} memset(lim,-1,sizeof(lim));
if(m>calc()) return puts("NO SUCH STONE")&0;
for(int i=1;i<=n;i++){
lim[i]=0;ll sum=calc();
if(m>sum) m-=sum,lim[i]=1;
}
for(int i=1;i<=n;i++) putchar(str[lim[i]]);
return 0;
}
洛谷 P4663 - [BalticOI 2008]魔法石(dp)的更多相关文章
- 洛谷P2507 [SCOI2008]配对 题解(dp+贪心)
洛谷P2507 [SCOI2008]配对 题解(dp+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1299251 链接题目地址:洛谷P2507 [S ...
- 洛谷 P4665 [BalticOI 2015]Network
洛谷 P4665 [BalticOI 2015]Network 你有一棵 $ n $ 个节点的树,你可以在树上加一些边,使这棵树变成一张无重边.自环的图,且删掉任意一条边它仍然联通.求最少要加多少条边 ...
- 洛谷 P3177 [HAOI2015]树上染色 树形DP
洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...
- 洛谷 P4072 [SDOI2016]征途 斜率优化DP
洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...
- 洛谷P1880 石子合并(区间DP)(环形DP)
To 洛谷.1880 石子合并 题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1 ...
- 洛谷P1063 能量项链(区间DP)(环形DP)
To 洛谷.1063 能量项链 题目描述 在Mars星球上,每个Mars人都随身佩带着一串能量项链.在项链上有N颗能量珠.能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数.并且,对于相邻的 ...
- 洛谷P1282 多米诺骨牌 (DP)
洛谷P1282 多米诺骨牌 题目描述 多米诺骨牌有上下2个方块组成,每个方块中有1~6个点.现有排成行的 上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|.例如在图8-1中 ...
- 洛谷 P5469 - [NOI2019] 机器人(区间 dp+拉格朗日插值)
洛谷题面传送门 神仙题,放在 D1T2 可能略难了一点( 首先显然对于 P 型机器人而言,将它放在 \(i\) 之后它会走到左边第一个严格 \(>a_i\) 的位置,对于 Q 型机器人而言,将它 ...
- 【题解】洛谷P4158 [SCOI2009] 粉刷匠(DP)
次元传送门:洛谷P4158 思路 f[i][j][k][0/1]表示在坐标为(i,j)的格子 已经涂了k次 (0是此格子涂错 1是此格子涂对)涂对的格子数 显然的是 每次换行都要增加一次次数 那么当j ...
随机推荐
- [no code][scrum meeting] Alpha 11
项目 内容 会议时间 2020-04-17 会议主题 OCR紧急技术风险分析 会议时长 30min 参会人员 PM+OCR组成员 $( "#cnblogs_post_body" ) ...
- 设置nginx进程可打开最大的文件数
涉及到的nginx配置参数: worker_processes: 表示操作系统启动多少个工作进程在运行,一般这个参数设置成CPU核数的倍数 worker_connections:表示nginx的工作进 ...
- Spring 5 中函数式web开发中的swagger文档
Spring 5 中一个非常重要的更新就是增加了响应式web开发WebFlux,并且推荐使用函数式风格(RouterFunction和 HandlerFunction)来开发WebFlux.对于之前主 ...
- AOP源码解析:AspectJAwareAdvisorAutoProxyCreator类的介绍
AspectJAwareAdvisorAutoProxyCreator 的类图 上图中一些 类/接口 的介绍: AspectJAwareAdvisorAutoProxyCreator : 公开了Asp ...
- Py高级函数和方法
Map() Redece() Dir() __len__ ---->>> len() getattr().setattr() 以及 hasattr() 参考廖雪峰----- ...
- 暴力尝试安卓gesture.key
import hashlib import os import itertools f = open(r'D:\KEY\gesture.key','r') psd = f.readline() f.c ...
- js实现日期格式化封装-八种格式
封装一个momentTime.js文件,包含8种格式. 需要传两个参数: 时间戳:stamp 格式化的类型:type, 日期补零的方法用到es6语法中的padStart(length,'字符'): 第 ...
- Appium 介绍与环境搭建
目录 Appium 介绍 APP 自动化测试介绍 什么是 Appium ? Appium 优势 Appium 架构 Appium 生态 Appium 组件 UiAutomator API Bootst ...
- 跟着老猫来搞GO-容器(1)
前期回顾 前面的一章主要和大家分享了GO语言的函数的定义,以及GO语言中的指针的简单用法,那么本章,老猫就和大家一起来学习一下GO语言中的容器. 数组 数组的定义 说到容器,大家有编程经验的肯定第一个 ...
- Python 数据类型常用的内置方法(三)
目录 Python 数据类型常用的内置方法(三) 1.列表内置方法 1.sort():升序 2.reverse():颠倒顺序 3.列表比较运算 2.字典内置方法 1.对Key的操作 2.len( )- ...